It has become common to wear physical activity monitors on the wrist to estimate steps per day, but few studies have considered step differences between monitors worn on the dominant and non-dominant wrists. Purpose: The purpose of this study was to compare four step counting methods on the dominant versus non-dominant wrist using the Fitbit Charge (FC) and ActiGraph GT9X (GT9X) across all waking hours of one day. Methods: Twelve participants simultaneously wore two monitors (FC and GT9X) on each wrist during all waking hours for an entire day. GT9X data were analyzed with three step counting methods: ActiLife algorithm with default filter (AG-noLFE), ActiLife algorithm with low-frequency extension (AG-LFE), and the Moving Average Vector Magnitude (AG-MAVM) algorithm. A 2-way repeated measures ANOVA (method × wrist) was used to compare step counts. Results: There was a significant main effect for wrist placement (F(1,11) = 11.81, p = .006), with the dominant wrist estimating an average of 1,253 more steps than the non-dominant wrist. Steps differed between the dominant and non-dominant wrist for three of the step methods: AG-noLFE (1,327 steps), AG-LFE (2,247 steps), AG-MAVM (825 steps), and approached statistical significance for FC (613 steps). No significant method x wrist placement interaction was found (F(3,9) = 2.62, p = .115). Conclusion: Findings suggest that for step counting algorithms, it may be important to consider the placement of wrist-worn monitors since the dominant wrist location tended to yield greater step estimates. Alternatively, standardizing the placement of wrist-worn monitors could help to reduce the differences in daily step counts across studies.