Dominant vs. Non-Dominant Wrist Placement of Activity Monitors: Impact on Steps per Day

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $37.00

1 year subscription

USD $50.00

Student 2 year subscription

USD $71.00

2 year subscription

USD $93.00

It has become common to wear physical activity monitors on the wrist to estimate steps per day, but few studies have considered step differences between monitors worn on the dominant and non-dominant wrists. Purpose: The purpose of this study was to compare four step counting methods on the dominant versus non-dominant wrist using the Fitbit Charge (FC) and ActiGraph GT9X (GT9X) across all waking hours of one day. Methods: Twelve participants simultaneously wore two monitors (FC and GT9X) on each wrist during all waking hours for an entire day. GT9X data were analyzed with three step counting methods: ActiLife algorithm with default filter (AG-noLFE), ActiLife algorithm with low-frequency extension (AG-LFE), and the Moving Average Vector Magnitude (AG-MAVM) algorithm. A 2-way repeated measures ANOVA (method × wrist) was used to compare step counts. Results: There was a significant main effect for wrist placement (F(1,11) = 11.81, p = .006), with the dominant wrist estimating an average of 1,253 more steps than the non-dominant wrist. Steps differed between the dominant and non-dominant wrist for three of the step methods: AG-noLFE (1,327 steps), AG-LFE (2,247 steps), AG-MAVM (825 steps), and approached statistical significance for FC (613 steps). No significant method x wrist placement interaction was found (F(3,9) = 2.62, p = .115). Conclusion: Findings suggest that for step counting algorithms, it may be important to consider the placement of wrist-worn monitors since the dominant wrist location tended to yield greater step estimates. Alternatively, standardizing the placement of wrist-worn monitors could help to reduce the differences in daily step counts across studies.

Park is with the Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA. Toth, Hibbing, Feyerabend, Crouter, and Bassett are with the Department of Kinesiology, University of Tennessee, Knoxville, Knoxville, TN. Springer is with the Office of Information Technology, Research Computing Support, University of Tennessee, Knoxville, Knoxville, TN. Kaplan is with the Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, WI.

Park (susanpark@umass.edu) is corresponding author.
Journal for the Measurement of Physical Behaviour
Article Sections
References
  • AbelM.G.PeritoreN.ShapiroR.MullineauxD.R.RodriguezK. & HannonJ.C. (2011). A comprehensive evaluation of motion sensor step-counting error. Applied Physiology Nutrition and Metabolism 36(1) 166170. PubMed ID: 21326392 doi:10.1139/H10-095

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BassettD.R.Jr.AinsworthB.E.LeggettS.R.MathienC.A.MainJ.A.HunterD.C. & DuncanG.E. (1996). Accuracy of five electronic pedometers for measuring distance walked. Medicine & Science in Sports & Exercise 28(8) 10711077. PubMed ID: 8871919 doi:10.1097/00005768-199608000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BassettD.R.Jr.TothL.P.LaMunionS.R. & CrouterS.E. (2017). Step counting: A review of measurement considerations and health-related applications. Sports Medicine 47(7) 13031315. PubMed ID: 28005190 doi:10.1007/s40279-016-0663-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CaryI. & AdamsJ. (2003). A comparison of dominant and non-dominant hand function in both right-and left-handed individuals using the Southampton Hand Assessment Procedure (SHAP). The British Journal of Hand Therapy 8(1) 410. doi:10.1177/175899830300800101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChenM.D.KuoC.C.PellegriniC.A. & HsuM.J. (2016). Accuracy of wristband activity monitors during ambulation and activities. Medicine & Science in Sports & Exercise 48(10) 19421949. PubMed ID: 27183123 doi:10.1249/MSS.0000000000000984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChowJ.J.ThomJ.M.WewegeM.A.WardR.E. & ParmenterB.J. (2017). Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait Posture 57199203. PubMed ID: 28666177 doi:10.1016/j.gaitpost.2017.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DohertyA.JacksonD.HammerlaN.PlotzT.OlivierP.GranatM.H.WarehamN.J. (2017). Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. PLoS One 12(2) 0169649. PubMed ID: 28146576 doi:10.1371/journal.pone.0169649

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EvensonK.R.GotoM.M. & FurbergR.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity 12159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeitoY.GarnerH.R. & BassettD.R. (2015). Evaluation of ActiGraph’s low-frequency filter in laboratory and free-living environments. Medicine & Science in Sports & Exercise 47(1) 211217. PubMed ID: 24870583 doi:10.1249/MSS.0000000000000395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FitbitI. (2017November 9). Does the wrist I wear my device on affect accuracy? How accurate are Fitbit devices? Retrieved from https://help.fitbit.com/articles/en_US/Help_article/1136

    • Search Google Scholar
    • Export Citation
  • IwaneM.AritaM.TomimotoS.SataniO.MatsumotoM.MiyashitaK. & NishioI. (2000). Walking 10, 000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension. Hypertension Research 23(6) 573580. PubMed ID: 11131268 doi:10.1291/hypres.23.573

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KuboM.WagenaarR.C.SaltzmanE. & HoltK.G. (2004). Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking. Biological Cybernetics 91(2) 9198. PubMed ID: 15351887 doi:10.1007/s00422-004-0503-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ModaveF.GuoY.BianJ.GurkaM.J.ParishA.SmithM.D.BufordT.W. (2017). Mobile device accuracy for step counting across age groups. Journal of Medical Internet Research Mhealth Uhealth 5(6) e88. doi:10.2196/mhealth.7870

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchneiderP.L.CrouterS. & BassettD.R. (2004). Pedometer measures of free-living physical activity: Comparison of 13 models. Medicine & Science in Sports & Exercise 36(2) 331335. PubMed ID: 14767259 doi:10.1249/01.MSS.0000113486.60548.E9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StrathS.J. & RowleyT.W. (2018). Wearables for promoting physical activity. Clinical Chemistry 64(1) 5363. PubMed ID: 29118062 doi:10.1373/clinchem.2017.272369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SwartzA.M.StrathS.J.BassettD.R.MooreJ.B.RedwineB.A.GroerM. & ThompsonD.L. (2003). Increasing daily walking improves glucose tolerance in overweight women. Preventive Medicine 37(4) 356362. PubMed ID: 14507493 doi:10.1016/S0091-7435(03)00144-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TothL.BassettD.R.Jr.CrouterS.E.OverstreetB.S.LaMunionS.R.ParkS.SpringerC.M. (2017). StepWatch accuracy during walking, running, and intermittent activities. Gait Posture 52165170. PubMed ID: 27914311 doi:10.1016/j.gaitpost.2016.11.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TothL.ParkS.PittmanW.SarisaltikD.HibbingP.R.MortonA.L.BassettD.R. (2018). Validity of activity tracker step counts during walking, running, and activities of daily living. Translational Journal of the American College of Sports Medicine 3(7) 5259.

    • Search Google Scholar
    • Export Citation
  • TothL.ParkS.PittmanW.SarasaltikD.MortonA. & BassettD. (2017). Step count filters in wearable step counters. Medicine & Science in Sports & Exercise 49(5S) 366. doi:10.1249/01.mss.0000517885.68396.5b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TothL.ParkS.SpringerC.M.FeyerabendM.D.SteevesJ.A. & BassettD.R. (2018). Video-recorded validation of wearable step counters under free-living conditions. Medicine & Science in Sports & Exercise 50(6) 13151322. PubMed ID: 29381649 doi:10.1249/MSS.0000000000001569

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TroianoR.P.McClainJ.J.BrychtaR.J. & ChenK.Y. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine 48(13) 10191023. PubMed ID: 24782483 doi:10.1136/bjsports-2014-093546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-LockeC.BarreiraT.V. & SchunaJ.M.Jr. (2015). Comparison of step outputs for waist and wrist accelerometer attachment sites. Medicine & Science in Sports & Exercise 47(4) 839842. PubMed ID: 25121517 doi:10.1249/MSS.0000000000000476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WijndaeleK.WestgateK.StephensS.K.BlairS.N.BullF.C.ChastinS.F.HealyG.N. (2015). Utilization and harmonization of adult accelerometry data: Review and expert consensus. Medicine & Science in Sports & Exercise 47(10) 21292139. PubMed ID: 25785929 doi:10.1249/MSS.0000000000000661

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WrightS.P.Hall BrownT.S.CollierS.R. & SandbergK. (2017). How consumer physical activity monitors could transform human physiology research. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 312(3) R358367. PubMed ID: 28052867 doi:10.1152/ajpregu.00349.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YamanouchiK.ShinozakiT.ChikadaK.NishikawaT.ItoK.ShimizuS.SatoY. (1995). Daily walking combined with diet therapy is a useful means for obese NIDDM patients not only to reduce body weight but also to improve insulin sensitivity. Diabetes Care 18(6) 775778. PubMed ID: 7555502 doi:10.2337/diacare.18.6.775

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 189 189 51
Full Text Views 8 8 2
PDF Downloads 7 7 2
Altmetric Badge
PubMed
Google Scholar