What is the Agreement Between Two Generations of Commercial Accelerometer in a Free-Living Environment for Young to Middle-Aged Adults?

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

Background: Rapid change in the commercial market can threaten consistency of activity data comparisons as devices are superseded. Purpose: To determine the level of agreement between two generations of Fitbit™ device for step count and activity level in a free-living environment. Methods: Thirty-seven healthy participants (17 women, 20 men; M ± SD: age 34 ± 8 y; body mass index 25.4 ± 3.9 kg/m2) wore a Fitbit Flex™ and Flex 2™ on their non-dominant wrist over two weeks in a free-living environment. A waist-mounted ActiGraph GT3X+ was also worn to provide a comparison of step count data obtained against a commercial device. Results: Comparison of step count between two generations of Fitbit™ device (Mean Absolute Percentage Error, 12%; Standard Error of Mean, 102.58 steps/d (p = .039); ICC = 0.955) showed closer inter-device agreement than comparison of step count data between commercial (Fitbit™) and research (ActiGraph GT3X+) grades of device (Mean Absolute Percentage Error, 31%; Standard Error of Mean, 124.6 steps/d (p < .001); ICC = 0.915). Statistically significant differences were identified for the Standard Error of Mean between generations of Fitbit™ device (p = .039) and grades of device (p < .001). A comparison of ‘fairly’ and ‘very’ active minutes showed no statistically significant difference between generations of Fitbit™ (p = .980); Mean Absolute Percentage Error, 38%; ICC = 0.908. The number of days of data captured for step count was comparable between to the two grades of device. Conclusion: Users should be aware of potential variations in data estimates from different generations of Fitbit™ device, with step count data providing a more consistent comparison metric.

Jones, Hart, Crossley, and Kemp are with the La Trobe Sport and Exercise Medicine Research Centre (LASEM), School of Allied Health, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, Australia. Hart is also with the Department of Physical Therapy, The University of Western Ontario, London, Ontario, Canada. Ackerman is with the School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.

Kemp (j.kemp@latrobe.edu.au) is corresponding author.
  • Adams, R. (1999). Revised physical activity readiness questionnaire. Canadian Family Physician, 45, 992. PubMed ID: 10216799

  • Alharbi, M., Bauman, A., Neubeck, L., & Gallagher, R. (2016). Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. European Journal of Preventive Cardiology, 23(14), 1476–1485. PubMed ID: 26907794 doi:10.1177/2047487316634883

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohannon, R.W. (2007). Number of pedometer-assessed steps taken per day by adults: a descriptive meta-analysis. Physical Therapy, 87(12), 1642–1650. PubMed ID: 17911274 doi:10.2522/ptj.20060037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, A.H., Ng, S.H., Paknezhad, M., Gauterin, A., Koh, D., Brown, M.S., & Müller-Riemenschneider, F. (2017). Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS One, 12(2), 0172535. PubMed ID: 28234953 doi:10.1371/journal.pone.0172535

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cicchetti, D.V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6(4), 284–290. doi:10.1037/1040-3590.6.4.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colley, R., Gorber, S.C., & Tremblay, M.S. (2010). Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Reports, 21(1), 63–9. Retrieved from http://ez.library.latrobe.edu.au/login?url=https://search-proquest-com.ez.library.latrobe.edu.au/docview/365771745?accountid=12001 PubMed ID: 20426228

    • Search Google Scholar
    • Export Citation
  • Colley, R.C., Garriguet, D., Janssen, I., Craig, C.L., Clarke, J., & Tremblay, M.S. (2011). Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Reports, 22(1), 7–14. Retrieved from http://ez.library.latrobe.edu.au/login?url=https://search-proquest-com.ez.library.latrobe.edu.au/docview/905091866?accountid=12001 PubMed ID: 21510585

    • Search Google Scholar
    • Export Citation
  • Corder, K., Brage, S., & Ekelund, U. (2007). Accelerometers and pedometers: methodology and clinical application. Current Opinion in Clinical Nutrition & Metabolic Care, 10(5), 597–603. PubMed ID: 17693743 doi:10.1097/MCO.0b013e328285d883

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dierker, K.E., & Smith, B.K. (2014). Comparison between four personal activity monitors and the Actigraph GT3X+ to measure daily steps. Medicine & Science in Sports & Exercise, 46(5), 792–792. doi:10.1249/01.mss.0000495877.54448.6c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominick, G.M., Winfree, K.N., Pohlig, R.T., & Papas, M.A. (2016). Physical activity assessment between consumer-and research-grade accelerometers: a comparative study in free-living conditions. JMIR mHealth and uHealth, 4(3), e110. PubMed ID: 27644334 doi:10.2196/mhealth.6281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feehan, L.M., Geldman, J., Sayre, E.C., Park, C., Ezzat, A.M., Yoo, J.Y., … Li, L.C. (2018). Accuracy of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data. JMIR mHealth and uHealth, 6(8), e10527. PubMed ID: 30093371 doi:10.2196/10527

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P., Bowles, H.R., Troiano, R., & Haskell, W. (2012). Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Medicine & Science in Sports & Exercise, 44(1 Suppl. 1), S1–4. PubMed ID: 22157769 doi:10.1249/MSS.0b013e3182399b7e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M., Bassett, D.R., Barreira, T.V., Tudor-Locke, C., Ainsworth, B., Reis, J.P., … Swartz, A. (2009). How many days are enough? A study of 365 days of pedometer monitoring. Research Quarterly for Exercise and Sport, 80(3), 445–453. PubMed ID: 19791630 doi:10.1080/02701367.2009.10599582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, J., Marinac, C.R., Ellis, K., Godbole, S., Hipp, A., Glanz, K., … Berrigan, D. (2017). Comparison of accelerometry methods for estimating physical activity. Medicine & Science in Sports & Exercise, 49(3), 617–624. PubMed ID: 27755355 doi:10.1249/MSS.0000000000001124

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooiman, T.J., Dontje, M.L., Sprenger, S.R., Krijnen, W.P., van der Schans, C.P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC Sports Science, Medicine and Rehabilitation, 7, 24–35. PubMed ID: 26464801 doi:10.1186/s13102-015-0018-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Hagströmer, M., Pober, D.M., & Bowles, H.R. (2012). Best practices for using physical activity monitors in population-based research. Medicine & Science in Sports & Exercise, 44(1 Suppl. 1), S68–S76. PubMed ID: 22157777 doi:10.1249/MSS.0b013e3182399e5b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Moore, R.W., Bowles, H.R., Korycinski, R., & Pfeiffer, K.A. (2018). Reporting accelerometer methods in physical activity intervention studies: a systematic review and recommendations for authors. British Journal of Sports Medicine, 52(23), 1507–1516. PubMed ID: 27539504 doi:10.1136/bjsports-2015-095947

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, M.B., Kaminsky, L.A., Dickin, D.C., & Montoye, A. (2016). Validity of consumer-based physical activity monitors for specific activity types. Medicine & Science in Sports & Exercise, 48(8), 1619–1628. PubMed ID: 27015387 doi:10.1249/MSS.0000000000000933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portney, L.G., & Watkins, M.P. (2015). Foundations of clinical research: applications to practice (3rd ed.). Philadelphia, PA: F A Davis Company.

    • Search Google Scholar
    • Export Citation
  • Reid, R.E., Insogna, J.A., Carver, T.E., Comptour, A.M., Bewski, N.A., Sciortino, C., & Andersen, R.E. (2017). Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. Journal of Science and Medicine in Sport, 20(6), 578–582. PubMed ID: 27887786 doi:10.1016/j.jsams.2016.10.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sushames, A., Edwards, A., Thompson, F., McDermott, R., & Gebel, K. (2016). Validity and reliability of Fitbit Flex for step count, moderate to vigorous physical activity and activity energy expenditure. PLoS One, 11(9), e0161224. PubMed ID: 27589592 doi:10.1371/journal.pone.0161224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L.M., Meyer, J., Epstein, D.A., Bragg, K., Engelen, L., Bauman, A., & Kay, J. (2018). Defining adherence: making sense of physical activity tracker data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 37. doi:10.1145/3191769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Masse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181–188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Sisson, S.B., Lee, S.M., Craig, C.L., Plotnikoff, R.C., & Bauman, A. (2006). Evaluation of quality of commercial pedometers. Canadian Journal of Public Health, 97, S10-5–S10-6. Retrieved from http://ez.library.latrobe.edu.au/login?url=https://search-proquest-com.ez.library.latrobe.edu.au/docview/231999333?accountid=12001

    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Barreira, T.V., & Schuna, J.M., Jr. (2015). Comparison of step outputs for waist and wrist accelerometer attachment sites. Medicine & Science in Sports & Exercise, 47(4), 839–842. PubMed ID: 25121517 doi:10.1249/MSS.0000000000000476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, S., Eliasziw, M., & Donner, A. (1998). Sample size and optimal designs for reliability studies. Statistics in Medicine, 17(1), 101–110. PubMed ID: 9463853 doi:10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117 117 9
Full Text Views 10 10 1
PDF Downloads 8 8 0