Accuracy of Commercially Available Smartwatches in Assessing Energy Expenditure During Rest and Exercise

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $37.00

1 year subscription

USD $50.00

Student 2 year subscription

USD $71.00

2 year subscription

USD $93.00

Background: This study examined the accuracy of Microsoft Band (MB), Fitbit Surge HR (FS), TomTom Cardio Watch (TT), and Apple Watch (AW) for energy expenditure (EE) estimation at rest and at different physical activity (PA) intensities. Method: During summer 2016, 25 college students (13 females; Mage = 23.52 ± 1.04 years) completed four separate 10-minute exercise sessions: rest (i.e., seated quietly), light PA (LPA; 3.0-mph walking), moderate PA (MPA; 5.0-mph jogging), and vigorous PA (VPA; 7.0-mph running) on a treadmill. Indirect calorimetry served as the criterion EE measure. The AW and TT were placed on the right wrist and the FS and MB on the left—serving as comparison devices. Data were analyzed in late 2017. Results: Pearson correlation coefficients revealed only three significant relationships (r = 0.43–0.57) between smartwatches’ EE estimates and indirect calorimetry: rest-TT; LPA-MB; and MPA-AW. Mean absolute percentage error (MAPE) values indicated the MB (35.4%) and AW (42.3%) possessed the lowest error across all sessions, with MAPE across all smartwatches lowest during the LPA (33.7%) and VPA (24.6%) sessions. During equivalence testing, no smartwatch’s 90% CI fell within the equivalence region designated by indirect calorimetry. However, the greatest overlap between smartwatches’ 90% CIs and indirect calorimetry’s equivalency region was observed during the LPA and VPA sessions. Finally, EE estimate variation attributable to the use of different manufacturer’s devices was greatest at rest (53.7 ± 12.6%), but incrementally decreased as PA intensity increased. Conclusions: MB and AW appear most accurate for EE estimation. However, smartwatch manufacturers may consider concentrating most on improving EE estimate accuracy during MPA.

Pope is with the Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN. Zeng is with the Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO. Li and Liu are with the School of Physical Education, Hunan Normal University, Changsha, China. Gao is with the School of Kinesiology, University of Minnesota, Minneapolis, MN.

Pope (popex157@umn.edu) and Gao (gaoz@umn.edu) are corresponding authors.
Journal for the Measurement of Physical Behaviour
Article Sections
References
  • AlharbiM.BaumanA.NeubeckL. & GallagherR. (2016). Validation of the fitbit-flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. European Journal of Preventive Cardiology 23(14) 14761485. PubMed ID: 26907794 doi:10.1177/2047487316634883

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaiY.WelkG.NamY.LeeJ.LeeJ.-M.KimY.DixonP. (2016). Comparison of consumer and research monitors under semistructured settings. Medicine & Science in Sports & Exercise 48(1) 151158. PubMed ID: 26154336 doi:10.1249/MSS.0000000000000727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaileyT.JonesH.GregsonW.AtkinsonG.CableN. & ThijssenD. (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine & Science in Sports & Exercise 44(11) 20842089. PubMed ID: 22843115 doi:10.1249/MSS.0b013e318262cb17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BransonR. & JohannigmanJ. (2004). The measurement of energy expenditure. Nutrition in Clinical Practice 19622636. PubMed ID: 16215161 doi:10.1177/0115426504019006622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BunnJ.NavaltaJ.FountaineC. & ReeceJ. (2018). Current state of commercial wearable technology in physical activity monitoring 2015–2017. International Journal of Exercise Science 11(7) 503515. PubMed ID: 29541338

    • Search Google Scholar
    • Export Citation
  • CaseM.BurwickH.VolppK. & PatelM. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. Journal of the American Medical Association 313(6) 625626. PubMed ID: 25668268 doi:10.1001/jama.2014.17841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CockcroftE.WilliamsC.TomlinsonO.VlachopoulosD.JackmanS.ArmstrongN. & BarkerA. (2015). High intensity interval exercise is an effective alternative to moderate intensity exercise for improving glucose tolerance and insulin sensitivity in adolescent boys. Journal of Science and Medicine in Sport 18(6) 720724. PubMed ID: 25459232 doi:10.1016/j.jsams.2014.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiazK.KrupkaD.ChangM.PeacockJ.MaY.GoldsmithJ.DavidsonK. (2015). Fitbit: an accurate and reliable device for wireless physical activity tracking. International Journal of Cardiology 185138140. PubMed ID: 25795203 doi:10.1016/j.ijcard.2015.03.038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DixonP.Saint-MauriceP.KimY.HibbingP. & WelkG. (2018). A primer on the use of equivalence testing for evaluating measurement agreement. Medicine & Science in Sports & Exercise 50(4) 837845. PubMed ID: 29135817 doi:10.1249/MSS.0000000000001481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DrillerM.McQuillanJ. & O’DonnellS. (2016). Inter-device reliability of an automatic-scoring actigraph for measuring sleep in healthy adults. Sleep Science 9198201. PubMed ID: 28123660 doi:10.1016/j.slsci.2016.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EvensonK.GotoM. & FurbergR. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition 12159. doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FergusonT.RowlandsA.OldsT. & MaherC. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity 1242. PubMed ID: 25890168 doi:10.1186/s12966-015-0201-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitbit. (2016). How does fitbit estimate how many calories I’ve burned. Retrieved from https://help.fitbit.com/articles/en_US/Help_article/1381

    • Search Google Scholar
    • Export Citation
  • FloresM.GlusmanG.BrogaardK.PriceN. & HoodL. (2013). P4 medicine: how systems medicine will transform the healthcare sector and society. Personalized Medicine 10(6) 565576. PubMed ID: 25342952 doi:10.2217/pme.13.57

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FokkemaT.KooimanT.KrijnenW.Van Der SchansC. & De GrootM. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine & Science in Sports & Exercise 49(4) 793800. PubMed ID: 28319983 doi:10.1249/MSS.0000000000001146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GotoC.NishiokaK.UmemuraT.JitsuikiD.SakagutchiA.KawamuraM.HigashiY. (2007). Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailability in humans. American Journal of Hypertension 20825830. PubMed ID: 17679027 doi:10.1016/j.amjhyper.2007.02.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarrissD.MacsweenA. & AtkinsonG. (2017). Standards for ethics in sport and exercise science research: 2018 update. International Journal of Sports Medicine 3811261131. PubMed ID: 29258155 doi:10.1055/s-0043-124001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoldyK. (2004). Monitoring energy metabolism with indirect calorimetry: Instruments, interpretation, and clinical application. Nutrition in Clinical Practice 19447454. PubMed ID: 16215138 doi:10.1177/0115426504019005447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoodL.BallingR. & AuffrayC. (2012). Revolutioning medicine in the 21st century through systems approaches. Biotechnology Journal 79921001. PubMed ID: 22815171 doi:10.1002/biot.201100306

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KenneyE.GortmakerS.EvensonK.GotoM. & FurbergR. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Medicine and Physical Activity 12(1) 510.

    • Search Google Scholar
    • Export Citation
  • KenneyW.WilmoreJ. & CostillD. (2015a). Adaptations to aerobic and anaerobic training. In W. KenneyJ. Wilmore & D. Costill (Eds.) Physiology of sport and exercise (6th ed. pp. 261291). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • KenneyW.WilmoreJ. & CostillD. (2015b). Body composition and nutrition for sport. In W. KenneyJ. Wilmore & D. Costill (Eds.) Physiology of sport and exercise (6th ed. pp. 371405). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • KenneyW.WilmoreJ. & CostillD. (2015c). Energy expenditure and fatigue. In W. KenneyJ. Wilmore & D. Costill (Eds.) Physiology of sport and exercise (6th ed. pp. 119150). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • KimY. & WelkG. (2015). Criterion validity of competing accelerometry-based activity monitoring devices. Medicine & Science in Sports & Exercise 47(11) 24562463. PubMed ID: 25910051 doi:10.1249/MSS.0000000000000691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeeC. & GorelickM. (2011). Validity of the smarthealth watch to measure heart rate and energy expenditure during rest and exercise. Measurement in Physical Education and Exercise Science 15(1) 1825. doi:10.1080/1091367X.2011.539089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeeC.GorelickM. & MendozaA. (2011). Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise. Journal of Sports Science 29(15) 16451653. doi:10.1080/02640414.2011.609899

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeeJ.KimY. & WelkG. (2014). Validity of consumer-based physical activity monitors. Medicine & Science in Sports & Exercise 46(9) 18401848. PubMed ID: 24777201 doi:10.1249/MSS.0000000000000287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LewisB.NapolitanoM.BumanM.WilliamsD. & NiggC. (2017). Future directions in physical activity intervention research: Expanding our focus to sedentary behaviors, technology, and dissemination. Journal of Behavioral Medicine 40(1) 112126. PubMed ID: 27722907 doi:10.1007/s10865-016-9797-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PetersB.HeelanK. & AbbeyB. (2013). Validation of omron pedometers using MTI accelerometers for use with children. International Journal of Exercise Science 6(2) 106113.

    • Search Google Scholar
    • Export Citation
  • PopeZ. & GaoZ. (2017). Mobile device apps in enhancing physical activity. In Z. Gao (Ed.) Technology in physical activity and promotion (pp. 106128). London, UK: Routledge Publisher.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PowellK.PaluchA. & BlairS. (2011). Physical activity for health: What kind? how much? how intense? on top of what? In J. FieldingR. Brownson & L. Green (Eds.) Annual review of public health (Vol. 32 pp. 349365). Palo Alto, CA: Annual Reviews.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • RenQ.LiZ. & LiangG. (2017). Comparison of active and passive movement on treadmill in healthy individuals. Space Medicine & Medical Engineering 30(3) 185190.

    • Search Google Scholar
    • Export Citation
  • SasakiJ.HickeyA.MaviliaM.TedescoJ.JohnD.KeadleS. & FreedsonP. (2015). Validation of the fitbit wireless activity tracker for prediction of energy expenditure. Journal of Physical Activity and Health 12(2) 149154. PubMed ID: 24770438 doi:10.1123/jpah.2012-0495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThomasJ.NelsonJ. & SilvermanS. (2011). Relationships among variables. In J. ThomasJ. Nelson & S. Silverman (Eds.) Research methods in physical activity (pp. 125144). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • TomTom. (2017). How calories are estimated on your watch. Retrieved from http://uk.support.tomtom.com/app/answers/detail/a_id/19148/~/how-calories-are-estimated-on-your-watch

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Health and Human Services. (2018). Physical activity guidelines for Americans (2nd ed.). Washington, DC: Author.

  • World Medical Association. (2018). World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. Retrieved from https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/

    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 469 469 89
Full Text Views 5 5 3
PDF Downloads 5 5 2
Altmetric Badge
PubMed
Google Scholar