Accuracy of Heart Rate and Energy Expenditure Estimations of Wrist-Worn and Arm-Worn Apple Watches

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $37.00

1 year subscription

USD $50.00

Student 2 year subscription

USD $71.00

2 year subscription

USD $93.00

Background: The purpose of this study was to examine the accuracy of heart rate (HR) and energy expenditure (EE) estimated by the Apple Watch Series 1 worn both on the wrist and the upper arm. Methods: Thirty healthy, young adults (15 females) wore the two monitors while participating in a maximal exercise test. Criterion measures were obtained from the Parvo Medics TrueOne 2400 Metabolic Cart and an electrocardiograph. Results: The HR estimations of the arm-worn (AW) Apple Watch had the highest agreement with the electrocardiogram, with mean absolute percent error (MAPE) of <2.5% for the entire sample, for males, and for females, at all exercise intensities. The HR estimations of the wrist-worn Apple Watch had MAPEs ranging from 3.61% (females at very light intensity) to 14.97% (males at very vigorous intensity). When estimating EE for total exercise bout in the entire sample, the arm-worn Apple Watch overestimated EE, with a MAPE of 39.63%, whereas the wrist-worn underestimated EE, with a MAPE of 32.28%. Both the arm- and wrist-worn overestimated EE for females and underestimated EE for males. Conclusion: Wearing the Apple Watch Series 1 on the upper arm versus the wrist improves the MAPE for HR estimations, but does not improve MAPE for the EE calculations when compared to a criterion measure.

The authors are with Department of Health and Exercise Science, Colorado State University, Fort Collins, CO.

Nuss (Kayla.nuss@colostate.edu) is corresponding author.
Journal for the Measurement of Physical Behaviour
Article Sections
References
  • ActionSleeve Armband for Apple Watch. (n.d.). Twelve South. Retrieved from https://www.twelvesouth.com/product/actionsleeve

  • Apple. (n.d.). Your heart rate. What it means, and where on Apple Watch you’ll find it. - Apple Support. Retrieved from https://support.apple.com/en-us/HT204666

    • Export Citation
  • Apple Watch - Close Your Rings - Apple. (n.d.). Retrieved from https://www.apple.com/watch/close-your-rings/

    • Export Citation
  • Apple Watch User Guide. (n.d.). Retrieved from https://help.apple.com/watch/en.lproj/static.html

    • Export Citation
  • BruceR.A.KusumiF. & HosmerD. (1973). Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. American Heart Journal 85(4) 546562. PubMed ID: 4632004 doi:10.1016/0002-8703(73)90502-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BunnJ.A.NavaltaJ.W.FountaineC.J. & ReeceJ.D. (2018). Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015–2017. Retrieved from https://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=2315&context=ijes

    • PubMed
    • Export Citation
  • BurkeL.E.WangJ. & SevickM.A. (2011). Self-monitoring in weight loss: a systematic review of the literature. Journal of the American Dietetic Association 111(1) 92102. PubMed ID: 21185970 doi:10.1016/j.jada.2010.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadmus-BertramL.GangnonR.WirkusE.J.Thraen-BorowskiK.M. & Gorzelitz-LiebhauserJ. (2017). The accuracy of heart rate monitoring by some wrist-worn activity trackers. Annals of Internal Medicine 166(8) 610612. PubMed ID: 28395305 doi:10.7326/L16-0353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChowdhuryE.A.WesternM.J.NightingaleT.E.PeacockO.J. & ThompsonD. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS One 12(2) e0171720. PubMed ID: 28234979 doi:10.1371/journal.pone.0171720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CohenJ. (1988). Statistical power analysis for the behavioral sciences second edition. Retrieved from ∼http://www.utstat.toronto.edu/∼brunner/oldclass/378f16/readings/CohenPower.pdf

    • Search Google Scholar
    • Export Citation
  • Consumer Technology Association. (2018). ANSI/CTA Standard: Physical Activity Monitoring for Heart Rates. Retrieved from www.cta.tech

  • CrouterS.E.AntczakA.HudakJ.R.DellaValleD.M. & HaasJ.D. (2006). Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. European Journal of Applied Physiology 98(2) 139151. PubMed ID: 16896734 doi:10.1007/s00421-006-0255-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DanneckerK.L.SazonovaN.A.MelansonE.L.SazonovE.S. & BrowningR.C. (2013). A comparison of energy expenditure estimation of several physical activity monitors. Medicine & Science in Sports & Exercise 45(11) 21052112. PubMed ID: 23669877 doi:10.1249/MSS.0b013e318299d2eb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DooleyE.E.GolaszewskiN.M. & BartholomewJ.B. (2017). Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR MHealth and UHealth 5(3) e34. PubMed ID: 28302596 doi:10.2196/mhealth.7043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FergusonT.RowlandsA.VOldsT. & MaherC. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity 12(1) 42. doi:10.1186/s12966-015-0201-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitness App 2019 Global Market Net Worth US$ 14.7 billion Forecast By 2026 - MarketWatch. (2019 January 29). Retrieved from https://www.marketwatch.com/press-release/fitness-app-2019-global-market-net-worth-us-147-billion-forecast-by-2026-2019-01-29

    • Export Citation
  • FletcherG.F.BaladyG.J.AmsterdamE.A.ChaitmanB.EckelR.FlegJ.BazzarreT. (2001). Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104(14) 16941740. PubMed ID: 11581152 doi:10.1161/hc3901.095960

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FryR.W.GrovetJ.R.MortonA.R.ZeroniP.M.GaudieriS. & KeastD. (1994). Psychological and immunological correlates of acute overtraining. British Journal of Sports Medicine 28(4) 241246. PubMed ID: 7894955 doi:10.1136/bjsm.28.4.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GaratacheaN.Torres-LuqueG. & González-GallegoJ. (2010). Physical activity and energy expenditure measurements using accelerometers in older adults. Nutrición Hospitalaria. doi:10.3305/nh.2010.25.2.4439

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Get the most accurate measurements using your Apple Watch - Apple Support. (n.d.). Retrieved from https://support.apple.com/en-us/HT207941

    • Export Citation
  • GlennK. (2017). Wrist-worn heart rate monitors less accurate than standard chest strap - American College of Cardiology. Retrieved from https://www.acc.org/about-acc/press-releases/2017/03/08/14/02/wrist-worn-heart-rate-monitors-less-accurate-than-standard-chest-strap

    • Search Google Scholar
    • Export Citation
  • GusmerR.J.BoschT.A.WatkinsA.N.OstremJ.D. & DengelD.R. (2014). Comparison of FitBit® Ultra to ActiGraph GT1M for assessment of physical activity in young adults during treadmill walking. The Open Sports Medicine Journal 8(1) 1115. doi:10.2174/1874387001408010011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • How your fitness tracker estimates calorie burn—explained. (2018 June 25). Retrieved from https://www.wareable.com/fitness-trackers/how-calorie-burn-estimates-8887

    • Export Citation
  • ImbodenM.T.NelsonM.B.KaminskyL.A. & MontoyeA.H. (2018). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British Journal of Sports Medicine 52844850. doi:10.1136/bjsports-2016-096990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JakicicJ.M.DavisK.K.RogersR.J.KingW.C.MarcusM.D.HelselD.BelleS.H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA 316(11) 11611171. doi:10.1001/jama.2016.12858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JeukendrupA. & Van DiemenA. (1998). Heart rate monitoring during training and competition in cyclists. Journal of Sports Sciences 16(Suppl. 1) 9199. doi:10.1080/026404198366722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JoE.LewisK.DirectoD.KimM.J. & DolezalB.A. (2016). Validation of biofeedback wearables for photoplethysmographic heart rate tracking. Journal of Sports Science & Medicine 15(3) 540. PubMed ID: 27803634

    • Search Google Scholar
    • Export Citation
  • KadelR.P. & KipK.E. (2012). A SAS macro to compute effect size (Cohen’s d) and its confidence interval from raw survey data. Proceedings of the Annual Southeast SAS Users Group Conference. Raleigh/Durham, NC.

    • Search Google Scholar
    • Export Citation
  • KarvonenJ. & VuorimaaT. (1988). Heart rate and exercise intensity during sports activities. Sports Medicine 5(5) 303312. doi:10.2165/00007256-198805050-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KeysA.FidanzaF.KarvonenM.J.KimuraN. & TaylorH.L. (1972). Indices of relative weight and obesity. Journal of Chronic Diseases 25(6–7) 329343. PubMed ID: 4650929 doi:10.1016/0021-9681(72)90027-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhushhalA.NicholsS.EvansW.Gleadall-SiddallD.O.PageR.O’DohertyA.F.AbtG. (2017). Validity and reliability of the Apple Watch for measuring heart rate during exercise. Sports Medicine International Open 1(6) E206E211. PubMed ID: 30539109 doi:10.1055/s-0043-120195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrollR.R.BoydJ.G. & MasloveD.M. (2016). Accuracy of a wrist-worn wearable device for monitoring heart rates in hospital inpatients: a prospective observational study. Journal of Medical Internet Research 18(9) e253. PubMed ID: 27651304 doi:10.2196/jmir.6025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeeJ.-M.KimY.-W. & WelkG.J. (2014). TRACK IT: Validity and utility of consumer-based physical activity monitors. ACSM’s Health & Fitness Journal 18(4) 1621. PubMed ID: 30922039 doi:10.1249/FIT.0000000000000051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MaherC.RyanJ.AmbrosiC. & EdneyS. (2017). Users’ experiences of wearable activity trackers: A cross-sectional study. BMC Public Health 17(1) 880. PubMed ID: 29141607 doi:10.1186/s12889-017-4888-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBrideG.B. (2005). A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. (NIWA Client Report: HAM2005-062). Hamilton New Zeeland: National Institute of Water & Atmospheric Research.

    • Search Google Scholar
    • Export Citation
  • Miles-ChanJ.L.SarafianD.MontaniJ.P.SchutzY. & DullooA.G. (2014). Sitting comfortably versus lying down: Is there really a difference in energy expenditure? Clinical Nutrition 33(1) 175178. PubMed ID: 24290343 doi:10.1016/j.clnu.2013.11.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’DriscollR.TuricchiJ.BeaulieuKScottS.MatuJ.DeightonK.FinlaysonG. & StubbsJ. (2018). How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine. Advance online publication. doi:10.1136/bjsports-2018-099643

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • ParakJ. & KorhonenI. (2014). Evaluation of wearable consumer heart rate monitors based on photopletysmography. Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 36703673.

    • Search Google Scholar
    • Export Citation
  • Parvo Medics. (2011). TrueOne 2400 Metabolic Measurement System Operator’s Guide Version 4.3. Sandy, UT: Parvo Medics.

  • PorcariJ.BryantC. & ComanaF. (2015). Exercise physiology. Philadelphia, PA: FA Davis.

  • SasakiJ.E.HickeyA.MaviliaM.TedescoJ.JohnD.KeadleS.K. & FreedsonP.S. (2015). Validation of the Fitbit wireless activity tracker for prediction of energy expenditure. Journal of Physical Activity and Health 12(2) 149154. PubMed ID: 24770438 doi:10.1123/jpah.2012-0495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ShcherbinaA.MattssonC.WaggottD.SalisburyH.ChristleJ.HastieT.AshleyE. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine 7(2) 3. Retrieved from http://www.mdpi.com/2075-4426/7/2/3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StackpoolC.PorcarciJ.MikatR.GilletteC. & FosterC. (2014). The accuracy of various activity trackers in estimating steps taken and energy expenditure. Journal of Fitness Reserach 3(3) 3248.

    • Search Google Scholar
    • Export Citation
  • StahlS.E.AnH.-S.DinkelD.M.NobleJ.M. & LeeJ.-M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport & Exercise Medicine 2e000106. PubMed ID: 27900173 doi:10.1136/bmjsem-2015-000106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TemkoA. (2017). Accurate heart rate monitoring during physical exercises using PPG. IEEE Transactions on Biomedical Engineering 64(9) 20162024. PubMed ID: 28278454 doi:10.1109/TBME.2017.2676243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThompsonP.ArenaR.RiebeD. & PescatelloL. (2013). ACSM’s Guidelines for Exercise Testing and Prescription (9th ed.). Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • ThomsonE.A.NussK.ComstockA.ReinwaldS.BlakeS.PimentelR.E.LiK. (2019). Heart rate measures from the Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. Journal of Sports Sciences37(12) 14111419.  doi:10.1080/02640414.2018.1560644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • TreesirichodA.ChansakulpornS. & WattanapanP. (2014). Correlation between skin color evaluation by skin color scale chart and narrowband reflectance spectrophotometer. Indian Journal of Dermatology 59(4) 33942. PubMed ID: 25071249 doi:10.4103/0019-5154.135476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TuckerW.J.BhammarD.M.SawyerB.J.BumanM.P. & GaesserG.A. (2015). Validity and reliability of Nike + Fuelband for estimating physical activity energy expenditure. BMC Sports Science Medicine and Rehabilitation 7(1) 14. doi:10.1186/s13102-015-0008-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WallenM.P.GomersallS.R.KeatingS.E.WisløffU. & CoombesJ.S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS One 11(5) e0154420. PubMed ID: 27232714 doi:10.1371/journal.pone.0154420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WoodmanJ.A.CrouterS.E.BassettJ.D.R.FitzhughE.C. & BoyerW.R. (2017). Accuracy of consumer monitors for estimating energy expenditure and activity type. Medicine & Science in Sports & Exercise 49(2) 371377. PubMed ID: 27580155 doi:10.1249/MSS.0000000000001090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZhangZ.PiZ. & LiuB. (2015). TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering 62(2) 522531. PubMed ID: 25252274 doi:10.1109/TBME.2014.2359372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZongC. & JafariR. (2015). Robust heart rate estimation using wrist-based PPG signals in the presence of intense physical activities. Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 80788082.

    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 72 72 72
Full Text Views 4 4 4
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar