Accuracy of Heart Rate and Energy Expenditure Estimations of Wrist-Worn and Arm-Worn Apple Watches

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

Background: The purpose of this study was to examine the accuracy of heart rate (HR) and energy expenditure (EE) estimated by the Apple Watch Series 1 worn both on the wrist and the upper arm. Methods: Thirty healthy, young adults (15 females) wore the two monitors while participating in a maximal exercise test. Criterion measures were obtained from the Parvo Medics TrueOne 2400 Metabolic Cart and an electrocardiograph. Results: The HR estimations of the arm-worn (AW) Apple Watch had the highest agreement with the electrocardiogram, with mean absolute percent error (MAPE) of <2.5% for the entire sample, for males, and for females, at all exercise intensities. The HR estimations of the wrist-worn Apple Watch had MAPEs ranging from 3.61% (females at very light intensity) to 14.97% (males at very vigorous intensity). When estimating EE for total exercise bout in the entire sample, the arm-worn Apple Watch overestimated EE, with a MAPE of 39.63%, whereas the wrist-worn underestimated EE, with a MAPE of 32.28%. Both the arm- and wrist-worn overestimated EE for females and underestimated EE for males. Conclusion: Wearing the Apple Watch Series 1 on the upper arm versus the wrist improves the MAPE for HR estimations, but does not improve MAPE for the EE calculations when compared to a criterion measure.

The authors are with Department of Health and Exercise Science, Colorado State University, Fort Collins, CO.

Nuss (Kayla.nuss@colostate.edu) is corresponding author.
  • ActionSleeve Armband for Apple Watch. (n.d.). Twelve South. Retrieved from https://www.twelvesouth.com/product/actionsleeve

  • Apple. (n.d.). Your heart rate. What it means, and where on Apple Watch you’ll find it. - Apple Support. Retrieved from https://support.apple.com/en-us/HT204666

    • Export Citation
  • Apple Watch - Close Your Rings - Apple. (n.d.). Retrieved from https://www.apple.com/watch/close-your-rings/

    • Export Citation
  • Apple Watch User Guide. (n.d.). Retrieved from https://help.apple.com/watch/en.lproj/static.html

    • Export Citation
  • Bruce, R.A., Kusumi, F., & Hosmer, D. (1973). Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. American Heart Journal, 85(4), 546–562. PubMed ID: 4632004 doi:10.1016/0002-8703(73)90502-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunn, J.A., Navalta, J.W., Fountaine, C.J., & Reece, J.D. (2018). Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015–2017. Retrieved from https://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=2315&context=ijes

    • PubMed
    • Export Citation
  • Burke, L.E., Wang, J., & Sevick, M.A. (2011). Self-monitoring in weight loss: a systematic review of the literature. Journal of the American Dietetic Association, 111(1), 92–102. PubMed ID: 21185970 doi:10.1016/j.jada.2010.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadmus-Bertram, L., Gangnon, R., Wirkus, E.J., Thraen-Borowski, K.M., & Gorzelitz-Liebhauser, J. (2017). The accuracy of heart rate monitoring by some wrist-worn activity trackers. Annals of Internal Medicine, 166(8), 610–612. PubMed ID: 28395305 doi:10.7326/L16-0353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhury, E.A., Western, M.J., Nightingale, T.E., Peacock, O.J., & Thompson, D. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS One, 12(2), e0171720. PubMed ID: 28234979 doi:10.1371/journal.pone.0171720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences, second edition. Retrieved from ∼http://www.utstat.toronto.edu/∼brunner/oldclass/378f16/readings/CohenPower.pdf

    • Search Google Scholar
    • Export Citation
  • Consumer Technology Association. (2018). ANSI/CTA Standard: Physical Activity Monitoring for Heart Rates. Retrieved from www.cta.tech

  • Crouter, S.E., Antczak, A., Hudak, J.R., DellaValle, D.M., & Haas, J.D. (2006). Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. European Journal of Applied Physiology, 98(2), 139–151. PubMed ID: 16896734 doi:10.1007/s00421-006-0255-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dannecker, K.L., Sazonova, N.A., Melanson, E.L., Sazonov, E.S., & Browning, R.C. (2013). A comparison of energy expenditure estimation of several physical activity monitors. Medicine & Science in Sports & Exercise, 45(11), 2105–2112. PubMed ID: 23669877 doi:10.1249/MSS.0b013e318299d2eb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dooley, E.E., Golaszewski, N.M., & Bartholomew, J.B. (2017). Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR MHealth and UHealth, 5(3), e34. PubMed ID: 28302596 doi:10.2196/mhealth.7043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, T., Rowlands, A.V, Olds, T., & Maher, C. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 42. doi:10.1186/s12966-015-0201-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitness App 2019 Global Market Net Worth US$ 14.7 billion Forecast By 2026 - MarketWatch. (2019, January 29). Retrieved from https://www.marketwatch.com/press-release/fitness-app-2019-global-market-net-worth-us-147-billion-forecast-by-2026-2019-01-29

    • Export Citation
  • Fletcher, G.F., Balady, G.J., Amsterdam, E.A., Chaitman, B., Eckel, R., Fleg, J., … Bazzarre, T. (2001). Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation, 104(14), 1694–1740. PubMed ID: 11581152 doi:10.1161/hc3901.095960

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fry, R.W., Grovet, J.R., Morton, A.R., Zeroni, P.M., Gaudieri, S., & Keast, D. (1994). Psychological and immunological correlates of acute overtraining. British Journal of Sports Medicine, 28(4), 241–246. PubMed ID: 7894955 doi:10.1136/bjsm.28.4.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garatachea, N., Torres-Luque, G., & González-Gallego, J. (2010). Physical activity and energy expenditure measurements using accelerometers in older adults. Nutrición Hospitalaria. doi:10.3305/nh.2010.25.2.4439

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Get the most accurate measurements using your Apple Watch - Apple Support. (n.d.). Retrieved from https://support.apple.com/en-us/HT207941

    • Export Citation
  • Glenn, K. (2017). Wrist-worn heart rate monitors less accurate than standard chest strap - American College of Cardiology. Retrieved from https://www.acc.org/about-acc/press-releases/2017/03/08/14/02/wrist-worn-heart-rate-monitors-less-accurate-than-standard-chest-strap

    • Search Google Scholar
    • Export Citation
  • Gusmer, R.J., Bosch, T.A., Watkins, A.N., Ostrem, J.D., & Dengel, D.R. (2014). Comparison of FitBit® Ultra to ActiGraph™ GT1M for assessment of physical activity in young adults during treadmill walking. The Open Sports Medicine Journal, 8(1), 11–15. doi:10.2174/1874387001408010011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • How your fitness tracker estimates calorie burn—explained. (2018, June 25). Retrieved from https://www.wareable.com/fitness-trackers/how-calorie-burn-estimates-8887

    • Export Citation
  • Imboden, M.T., Nelson, M.B., Kaminsky, L.A., & Montoye, A.H. (2018). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British Journal of Sports Medicine, 52, 844–850. doi:10.1136/bjsports-2016-096990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakicic, J.M., Davis, K.K., Rogers, R.J., King, W.C., Marcus, M.D., Helsel, D., … Belle, S.H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA, 316(11), 1161–1171. doi:10.1001/jama.2016.12858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A., & Van Diemen, A. (1998). Heart rate monitoring during training and competition in cyclists. Journal of Sports Sciences, 16(Suppl. 1), 91–99. doi:10.1080/026404198366722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, E., Lewis, K., Directo, D., Kim, M.J., & Dolezal, B.A. (2016). Validation of biofeedback wearables for photoplethysmographic heart rate tracking. Journal of Sports Science & Medicine, 15(3), 540. PubMed ID: 27803634

    • Search Google Scholar
    • Export Citation
  • Kadel, R.P., & Kip, K.E. (2012). A SAS macro to compute effect size (Cohen’s d) and its confidence interval from raw survey data. Proceedings of the Annual Southeast SAS Users Group Conference. Raleigh/Durham, NC.

    • Search Google Scholar
    • Export Citation
  • Karvonen, J., & Vuorimaa, T. (1988). Heart rate and exercise intensity during sports activities. Sports Medicine, 5(5), 303–312. doi:10.2165/00007256-198805050-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, A., Fidanza, F., Karvonen, M.J., Kimura, N., & Taylor, H.L. (1972). Indices of relative weight and obesity. Journal of Chronic Diseases, 25(6–7), 329–343. PubMed ID: 4650929 doi:10.1016/0021-9681(72)90027-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khushhal, A., Nichols, S., Evans, W., Gleadall-Siddall, D.O., Page, R., O’Doherty, A.F., … Abt, G. (2017). Validity and reliability of the Apple Watch for measuring heart rate during exercise. Sports Medicine International Open, 1(6), E206–E211. PubMed ID: 30539109 doi:10.1055/s-0043-120195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroll, R.R., Boyd, J.G., & Maslove, D.M. (2016). Accuracy of a wrist-worn wearable device for monitoring heart rates in hospital inpatients: a prospective observational study. Journal of Medical Internet Research, 18(9), e253. PubMed ID: 27651304 doi:10.2196/jmir.6025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-M., Kim, Y.-W., & Welk, G.J. (2014). TRACK IT: Validity and utility of consumer-based physical activity monitors. ACSM’s Health & Fitness Journal, 18(4), 16–21. PubMed ID: 30922039 doi:10.1249/FIT.0000000000000051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, C., Ryan, J., Ambrosi, C., & Edney, S. (2017). Users’ experiences of wearable activity trackers: A cross-sectional study. BMC Public Health, 17(1), 880. PubMed ID: 29141607 doi:10.1186/s12889-017-4888-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, G.B. (2005). A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. (NIWA Client Report: HAM2005-062). Hamilton, New Zeeland: National Institute of Water & Atmospheric Research.

    • Search Google Scholar
    • Export Citation
  • Miles-Chan, J.L., Sarafian, D., Montani, J.P., Schutz, Y., & Dulloo, A.G. (2014). Sitting comfortably versus lying down: Is there really a difference in energy expenditure? Clinical Nutrition, 33(1), 175–178. PubMed ID: 24290343 doi:10.1016/j.clnu.2013.11.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Driscoll, R., Turicchi, J., Beaulieu, K, Scott, S., Matu, J., Deighton, K., Finlayson, G., & Stubbs, J. (2018). How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine. Advance online publication. doi:10.1136/bjsports-2018-099643

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parak, J., & Korhonen, I. (2014). Evaluation of wearable consumer heart rate monitors based on photopletysmography. Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3670–3673.

    • Search Google Scholar
    • Export Citation
  • Parvo Medics. (2011). TrueOne 2400 Metabolic Measurement System Operator’s Guide, Version 4.3. Sandy, UT: Parvo Medics.

  • Porcari, J., Bryant, C., & Comana, F. (2015). Exercise physiology. Philadelphia, PA: FA Davis.

  • Sasaki, J.E., Hickey, A., Mavilia, M., Tedesco, J., John, D., Keadle, S.K., & Freedson, P.S. (2015). Validation of the Fitbit wireless activity tracker for prediction of energy expenditure. Journal of Physical Activity and Health, 12(2), 149–154. PubMed ID: 24770438 doi:10.1123/jpah.2012-0495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., Mattsson, C., Waggott, D., Salisbury, H., Christle, J., Hastie, T., … Ashley, E. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine, 7(2), 3. Retrieved from http://www.mdpi.com/2075-4426/7/2/3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackpool, C., Porcarci, J., Mikat, R., Gillette, C., & Foster, C. (2014). The accuracy of various activity trackers in estimating steps taken and energy expenditure. Journal of Fitness Reserach, 3(3), 32–48.

    • Search Google Scholar
    • Export Citation
  • Stahl, S.E., An, H.-S., Dinkel, D.M., Noble, J.M., & Lee, J.-M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport & Exercise Medicine, 2, e000106. PubMed ID: 27900173 doi:10.1136/bmjsem-2015-000106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Temko, A. (2017). Accurate heart rate monitoring during physical exercises using PPG. IEEE Transactions on Biomedical Engineering, 64(9), 2016–2024. PubMed ID: 28278454 doi:10.1109/TBME.2017.2676243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P., Arena, R., Riebe, D., & Pescatello, L. (2013). ACSM’s Guidelines for Exercise Testing and Prescription (9th ed.). Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • Thomson, E.A., Nuss, K., Comstock, A., Reinwald, S., Blake, S., Pimentel, R.E., … Li, K. (2019). Heart rate measures from the Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. Journal of Sports Sciences, 37(12), 1411–1419.  doi:10.1080/02640414.2018.1560644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Treesirichod, A., Chansakulporn, S., & Wattanapan, P. (2014). Correlation between skin color evaluation by skin color scale chart and narrowband reflectance spectrophotometer. Indian Journal of Dermatology, 59(4), 339–42. PubMed ID: 25071249 doi:10.4103/0019-5154.135476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, W.J., Bhammar, D.M., Sawyer, B.J., Buman, M.P., & Gaesser, G.A. (2015). Validity and reliability of Nike + Fuelband for estimating physical activity energy expenditure. BMC Sports Science, Medicine and Rehabilitation, 7(1), 14. doi:10.1186/s13102-015-0008-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallen, M.P., Gomersall, S.R., Keating, S.E., Wisløff, U., & Coombes, J.S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS One, 11(5), e0154420. PubMed ID: 27232714 doi:10.1371/journal.pone.0154420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodman, J.A., Crouter, S.E., Bassett, J.D.R., Fitzhugh, E.C., & Boyer, W.R. (2017). Accuracy of consumer monitors for estimating energy expenditure and activity type. Medicine & Science in Sports & Exercise, 49(2), 371–377. PubMed ID: 27580155 doi:10.1249/MSS.0000000000001090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Pi, Z., & Liu, B. (2015). TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering, 62(2), 522–531. PubMed ID: 25252274 doi:10.1109/TBME.2014.2359372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zong, C., & Jafari, R. (2015). Robust heart rate estimation using wrist-based PPG signals in the presence of intense physical activities. Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 8078–8082.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 283 283 56
Full Text Views 16 16 2
PDF Downloads 9 9 1