Research Tracker 6 Accelerometer Calibration and Validation in Comparison to GENEActiv, ActiGraph, and Gas Analysis in Young Adults

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

Background: The ability to objectively assess physical activity and inactivity in free living individuals is important in understanding activity patterns and the dose response relationship with health. Currently, a large number of research tools exist, but little evidence has examined the validity/utility of the Research Tracker 6 (RT6) monitor. Questions remain in regard to the best placements, positions, and cut-points in young adults to determine activity intensity across a range of activities. This study sought to address this gap in young adults. The study aims were 1) to examine criterion validity of RT6 in comparison to breath-by-breath gas analysis; 2) convergent validity of RT6 in comparison to ActiGraph and GENEActiv; 3) development of RT6 tri-axial vector magnitude cut-points to classify physical activity at different intensities (i.e., for sedentary, moderate, and vigorous); 4) to compare the generated cut-points of the RT6 in comparison to other tools. Methods: Following ethics approval and informed consent, 31 young adults (age = 22±3 years: BMI = 23±3 kg/m2) undertook five modes of physical activity/sedentary behaviors while wearing three different accelerometers at hip and wrist locations (ActiGraph GT9X Link, GENEActiv, RT6). Expired gas was sampled during the five activities (MetaMax 3B). Correlational analysis assessed the relationship between accelerometer devices and METs/VO2. Receiver Operating Characteristic Curves analysis were used to calculate area under the curve and define cut-points for physical activity intensities. Results: The RT6 demonstrated criterion and convergent validity (r = 0.662–0.966, P < .05). RT6 generally performed good to excellent across activity intensities and monitor position (sedentary [AUC = 0.862–0.911], moderate [AUC = 0.849–0.830], vigorous [AUC = 0.872–0.877]) for non-dominant and dominant position, respectively. Cut-points were derived across activity intensities for non-dominant- and dominant-worn RT6 devices. Comparison of the RT6 derived cut-points identified appropriate agreement with comparative tools but yields the strongest agreement with the ActiGraph monitor at the hip location during sedentary, light, and moderate activity. Conclusion: The RT6 performed similar to the ActiGraph and GENEActiv and is capable of classifying the intensity of physical activity in young adults. As such this may offer a more useable tool for understanding current physical activity levels and in intervention studies to monitor and track changes without the excessive need for downloading and making complex analysis, especially given the option to view energy expenditure data while wearing it. The RT6 should be placed on the dominant hip when determining activities that are sedentary, moderate, or vigorous intensity.

Eyre, Tallis, and Duncan are with the Centre for Sport, Exercise & Life Sciences, Coventry Univerity, Coventry, United Kingdom. Wilson, Wilde, and Akhurst are with the School of Life Sciences, Coventry University, Coventry, United Kingdom. Wanderley is with the Universidade de Pernambuco, Recife, Brazil.

Eyre (Emma.Eyre@Coventry.ac.uk) is corresponding author.
  • Acheson, K.J. (1988). Theory, assumptions and limitations of calculating energy expenditure and substrate utilization from respiratory exchange data. In: Workshop on Methodological Questions on Indirect Calorimetry, 1986. Austrai, Salzburg.

    • Search Google Scholar
    • Export Citation
  • Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., & Leon, A.S. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32(Suppl. 9), S498–S504. doi:10.1097/00005768-200009001-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chief Medical Officer. (2010). Physical activity guidelines in the UK: Review and recommendations. BHF National Centre. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/213743/dh_128255.pdf

    • Search Google Scholar
    • Export Citation
  • Chinapaw, M.J., Mokkink, L.B., van Poppel, M.N., van Mechelen, W., & Terwee, C.B. (2010). Physical activity questionnaires for youth: A systematic review of measurement properties. Sports Medicine, 40(7), 539–563. PubMed ID: 20545380 doi:10.2165/11530770-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S. E., Flynn Oody, J., & Bassett, D. R. (2018). Estimating physical activity in youth using an ankle accelerometer. Journal of Sports Science, 36:2265–2271. doi:10.1080/02640414.2018.1449091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Vries, S.L., Van Hirtum, H.W., Bakker, I., Hopman-Rock, M., Hirasing, R.A., & Van Mechelen, W. (2009). Validity and reproducibility of motion sensors in youth: a systematic update. Medicine and Science in Sports and Exercise, 41(4), 818–827. PubMed ID: 19276851 doi:10.1249/MSS.0b013e31818e5819

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M.J., Wilson, S., Tallis, J., & Eyre, E. (2016). Validation of the Phillips et al. GENEActiv accelerometer cut-points in children aged 5-8 years old. European Journal of Pediatrics, 175, 2019–2021. PubMed ID: 27785561 doi:10.1007/s00431-016-2795-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duruturk, N., Pekyavas, N.O., Caglar, A., & Tekindal, M.A. (2017). Reliability and validity of RT6 accelerometer with comparing different walking self-selected speeds. Physiotherapy Research and Reports, 1(1), 1–5. doi:10.15761/PRR.1000102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G. (2016). Hip and Wrist accelerometer algorithms for free-living behaviour classification. Medicine and Science in Sports and Exercise, 48(5), 933–940. doi:10.2165/11530770-000000000-0000010.12.1249/MSS.0000000000000840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esliger, D.W., Rowlands, A.V., Hurst, T.L., Catt, M., Murray, P., & Eston, E.G. (2011). Validation of the GENEActiv accelerometer. Medicine and Science in Sports and Exercise, 43, 1085–1093. PubMed ID: 21088628 doi:10.1249/MSS.0b013e31820513be

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Catellier, D.J., Gill, K., Ondrak, K.S., & McMurray, R.G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Science, 26, 1557–1565. doi:10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garatachea, N., Torres Luque, G., & González Gallego, J. (2010). Physical activity and energy expenditure measurements using accelerometers in older adults. Nutricion Hospitalaria, 25(2), 224–30. PubMed ID: 20449530

    • Search Google Scholar
    • Export Citation
  • Gillen, J.B., & Gibala, M.J. (2013). Is high-intensity interval training a time efficient exercise strategy to improve health and fitness. Applied Physiology, Nutrition, and Metabolism, 39(3), 409–412. PubMed ID: 24552392 doi:10.1139/apnm-2013-0187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, M., Van Hees, V.T., Hansen, B.H., & Ekelund, U. (2014). Age-group comparability of raw accelerometer output from wrist- and hipworn monitors. Medicine and Science in Sports and Exercise, 2014;46(9), 1816–1824. PubMed ID: 24887173 doi:10.1249/MSS.0000000000000289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hills, A.P., Mokhtar, N., & Byrne, N.M. (2014). Assessment of physical activity and energy expenditure: An overview of objective measures. Frontiers in Nutrition, 1(5), 1–16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jefferis, B.J., Parson, T.J., Sartini, C., Ash, S., Lennon, L.T., Wannamethee, G., . . . Whincup, P. (2016). Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older british men. International Journal of Behavioural Nutrition and Physical Activity, 13, 36. doi:10.1186/s12966-016-0361-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, D., Tyo, B., & Bassett, D.R. (2010). Comparison of four ActiGraph accelerometers during walking and running. Medicine and Science in Sports and Exercise, 42(2), 368–374. PubMed ID: 19927022 doi:10.1249/MSS.0b013e3181b3af49

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubans, D.R., Hesketh, K., Cliff, D.P., Barnett, L.M., Salmon, J., Dollman, J., & Hardy, L.L. (2011). A systematic review of the validity and reliability of sedentary behaviour measures used with children and adolescents. Obesity Reviews, 12(10), 781–799. PubMed ID: 21676153 doi:10.1111/j.1467-789X.2011.00896.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Kozey, S.L., Staudenmeyer, J.W., & Freedson, P.S. (2011). A comprehensive evaluation of commonly used accelerometer energy expenditure and MET predictive equations. European Journal of Applied Physiology, 111(2), 187–201. PubMed ID: 20842375 doi:10.1007/s00421-010-1639-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macfarlane, D.J., & Wong, P. (2012). Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. European Journal of Applied Physiology, 112; 2539–2547. PubMed ID: 22075643 doi:10.1007/s00421-011-2230-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mair, J.L., Nevill, A.M., De Vito, G., & Boreham, C.A. (2016). Personalised prescription of scalable high intensity training to inactive female adults of different ages. PLoS One, 11(2), e0148702. PubMed ID: 26848956 doi:10.1371/journal.pone.0148702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVeigh, J.A., Winkler, E.A.H., Howie, E.K., Tremblay, M.S., Smith, A., Abbott, R.A., & Straker, L.M. (2016). Objectively measured patterns of sedentary time and physical activity in young adults of the Raine study cohort. International Journal of Behavioural Nutrition and Physical Activity, 13, 41. doi: 10.1186/s12966-016-0363-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, C.E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8, 283–298. PubMed ID: 112681 doi:10.1016/S0001-2998(78)80014-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, T., Georg, T., Becker, C., & Kindermann, W. (2001). Reliability of gas exchang measurements from two different spiroergometry systems. Internal Journal of Sports Medicine, 22(8), 593–597. doi:10.1055/s-2001-18523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadanas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., More-Gonzalez, J., Lof, M., . . . Ortega, F.B. (2017). Accelerometer data collection and processing critieria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Medicine, 47(9), 1821–1845. doi:10.1007/4s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, S.L. (2009). Review of physical activity measurement using accelerometers in older adults: Considerations for research design and conduct. Preventive Medicine, 48(2), 109–114. doi:10.1016/j.ypmed.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Office of Disease Prevention and Health Promotion. (2010). Healthy People. Physical Activity and Fitness. Retrieved from http://web.health.gov/healthypeople/document/HTML/Volume2/22Physical.htm

    • Search Google Scholar
    • Export Citation
  • Ozemek, C., Kirchner, M.M., Wilkerson, B.S., Byun, W., & Kaminsky, L.A. (2014). Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living. Physiological Measurement, 35(2), 129–138. PubMed ID: 24399138 doi:10.1088/0967-3334/35/2/129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavey, T.G., Gomersall, S.R., Clark, B.K., & Brown, W.J. (2016). The validity of the GENEActiv wrist worn accelerometer for measuring adult sedentary time in free living. Journal of Science and Medicine in Sport, 19(5), 395–399. PubMed ID: 25956687 doi:10.1016/j.jsams.2015.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, L.R., Parfitt, G., & Rowlands, A.V. (2014). Calibration of the GENEActiv accelerometer for assessment of physical activity intensity in children. Journal of Science and Medicine in Sport, 16, 124–128. doi:10.1016/j.jsams.2012.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plasqui, G., & Westerterp, K.R. (2007). Physical activity assessment with accelerometer: An evaluation against doubly labelled water. Obesity, 15(10), 2371–2379. PubMed ID: 17925461 doi:10.1038/oby.2007.281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothney, M.P., Schaefer, E.V., Neumann, M.M., Choi, L., & Chen, K.Y. (2008a). Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity 16, 1946–1952. doi:10.1038/oby.2008.279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothney, M.P., Apker, G.A., Song, Y., & Chen, K.Y. (2008b). Comparing the performance of three generations of ActiGraph accelerometers. Comparing the performance of three generations of ActiGraph accelerometers, 105(4), 1091–1097. PubMed ID: 18635874 doi:10.1152/japplyphysiol.90641.2008

    • Search Google Scholar
    • Export Citation
  • Ryan, J., & Gormley, J. (2013). An evaluation of energy expenditure estimation by three activity monitors. European Journal of Sports Science, 13, 681–688. doi:10.1080/17461391.2013.776639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, J.P., Loveday, A., Pearson, N., Edwardson, C., Yates, T., Biddle, S.J., & Eslinger, D.W. (2016). Devices for self-monitoring sedentary time or physical activity: A scoping review. Journal of Medical Internet Research, 18(5), e90. PubMed ID: 27145905 doi:10.2196/jmir.5373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, J.E., John, D., & Freedson, P.S. (2011). Validation of comparison of ActiGraph activity monitors. Journal of Science and Medicine in Sport, 14, 411–416. PubMed ID: 21616714 doi:10.1016/j.jsams.2011.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stec, M.J., & Rawson, E.S. (2012). Estimation of resistance exercise energy expenditure using triaxial accelerometry. Journal of Strength and Conditioning Research, 26:1413–1422. PubMed ID: 22222328 doi:10.1519/JSC.0b013e318248d7b4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumukadas, D., Laidlaw, S., & Witham, M.D. (2008). Using the RT3 accelerometer to measure everyday activity in functionally impaired older people. Aging Clinical and Experimental Research, 20, 15–18. PubMed ID: 18283223 doi:10.1007/BF03324742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telama, R., Yang, X., Leskinen, E., Kankaanpaa, A., Hirvensalo, M., Tammelin, T., & Raitakari, O.T. (2014). Tracking of physical activity from early childhood through youth into adulthood. Medicine and Science in Sports and Exercise, 46, 955–962. PubMed ID: 24121247 doi:10.1249/MSS.0000000000000181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., & Latimer-Cheung, A.E. (2017). Sedentary Behaviour Research Network (SBRN) terminology consensus project process and outcome. International Journal of Behaviour Nutrition and Physical Activity, 14:75. doi:10.1186/s12966-017-0525-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., McClain, J.J., Brychta, R.J., & Chen, K.Y. (2010). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48, 1019–1023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viera, A.J., & Garrett, J.M. (2005). Understanding interobserver agreement: The kappa statistics. Family Medicine, 37, 36–363.

  • Watson, K.B., Carlson, S.A., Carroll, D.D., & Fulton, J.E. (2014). Comparison of accelerometer cut points to estimate physical activity in US adults. Journal of Sports Science, 32, 660–669. doi:10.1080/02640414.2013.847278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J., Blair, S.N., Wood, K., Jones, S., & Thompson, R.W. (2000). A comparative evaluation of three accelerometer-based physical activity monitors. Medicine and Science in Sports and Exercise, 32: S489–S497. PubMed ID: 10993419 doi:10.1097/00005768-200009001-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitcher, L., & Papadopoulos, C. (2014). Accelerometer derived activity counts and oxygen consumption between young and older individuals. Journal of Aging Research, 2014, 1–8. doi:10.1155/2014/184693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organisation. (2010). Global recommendations on physical activity for health. Retrieved from http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/index.html

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 77 77 20
Full Text Views 26 26 1
PDF Downloads 21 21 1