The Applicability of Thigh-Worn vs. Hip-Worn ActiGraph Accelerometers During Walking and Running

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $37.00

1 year subscription

USD  $50.00

Student 2 year subscription

USD  $71.00

2 year subscription

USD  $93.00

Accelerometers are widely used to measure physical activity, but limitations in the ability to differentiate between running intensities have been reported. This problem may relate to accelerometer placement. In this study, we compare the validity of accelerometers placed on the hip and the thigh for the measurement of walking and running speed under laboratory and field conditions. Young healthy men and women wore ActiGraph GT3X+ accelerometers on the hip and on the thigh while performing walking and running activities in laboratory (n = 31) and field conditions (n = 17). Vector magnitude counts per minute (VM cpm) were correlated with speed of locomotion and, during laboratory trials, with oxygen consumption (VO2, ml·min−1·kg−1). Both hip- and thigh-placed VM cpm showed strong correlations with walking speed ranging from 3 to 7 km·h−1 (r = 0.93 and r = 0.95, respectively) and VO2 (r = 0.85 and r = 0.91, respectively). Compared with the hip-placed VM cpm, thigh-placed VM cpm showed significantly stronger correlations with running speed ranging from 7 to 20 km·h−1 (r = 0.29 and r = 0.89, respectively) and the corresponding VO2 (r = 0.25 and r = 0.87, respectively). Regardless of accelerometer placement, VM cpm were similar between laboratory and field tests performed at comparable walking and running speeds. These results show that accelerometers placed on the thigh, but not on the hip, provide proportional output across a wide range of walking and running speeds. Thus, thigh-placed accelerometers are able to differentiate between running intensities in both laboratory and field conditions.

Pedersen and Skovgaard share first authorship. The authors are with the Section for Sport Science, Aarhus University, Aarhus, Denmark; and with the Department of Health Science and Technology, Aalborg University, Denmark.

Skovgaard (els@ph.au.dk) is corresponding author.
  • Achten, J., Gleeson, M., & Jeukendrup, A.E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Medicine & Science in Sports & Exercise, 34(1), 92–97. PubMed ID: 11782653 doi:10.1097/00005768-200201000-00015

    • Search Google Scholar
    • Export Citation
  • ActiGraph Data Conversion Process. (n.d.). Retrieved from https://actigraph.desk.com/customer/en/portal/articles/2515508-actigraph-data-conversion-process

  • Allahbakhshi, H., Hinrichs, T., Huang, H., & Weibel, R. (2019). The key factors in physical activity type detection using real-life data: A systematic review. Frontiers in Physiology, 10, 75. PubMed ID: 30809152 doi:10.3389/fphys.2019.00075

    • Search Google Scholar
    • Export Citation
  • Bowen, T.S., Murgatroyd, S.R., Cannon, D.T., Cuff, T.J., Lainey, A.F., Marjerrison, A.D., . . . Rossiter, H.B. (2011). A raised metabolic rate slows pulmonary O2 uptake kinetics on transition to moderate-intensity exercise in humans independently of work rate. Experimental Physiology, 96(10), 1049–1061. PubMed ID: 21705403 doi:10.1113/expphysiol.2011.058321

    • Search Google Scholar
    • Export Citation
  • Brage, S., Wedderkopp, N., Franks, P.W., Andersen, L.B., & Froberg, K. (2003). Reexamination of validity and reliability of the CSA monitor in walking and running. Medicine & Science in Sports & Exercise, 35(8), 1447–1454. PubMed ID: 12900703 doi:10.1249/01.MSS.0000079078.62035.EC

    • Search Google Scholar
    • Export Citation
  • Brughelli, M., Cronin, J., & Chaouachi, A. (2011). Effects of running velocity on running kinetics and kinematics. Journal of Strength & Conditioning Research, 25(4), 933–939. PubMed ID: 20703170 doi:10.1519/JSC.0b013e3181c64308

    • Search Google Scholar
    • Export Citation
  • Cavagna, G.A., Thys, H., & Zamboni, A. (1976). The sources of external work in level walking and running. The Journal of Physiology, 262(3), 639–657. PubMed ID: 1011078 doi:10.1113/jphysiol.1976.sp011613

    • Search Google Scholar
    • Export Citation
  • Chen, K.Y., & Bassett, D.R. (2005). The technology of accelerometry-based activity monitors: current and future. Medicine & Science in Sports & Exercise, 37(Suppl. 11), S490–S500. doi:10.1249/01.mss.0000185571.49104.82.

    • Search Google Scholar
    • Export Citation
  • Cooper, A.R., Wedderkopp, N., Wang, H., Andersen, L.B., Froberg, K., & Page, A.S. (2006). Active travel to school and cardiovascular fitness in Danish children and adolescents. Medicine & Science in Sports & Exercise, 38(10), 1724–1731. PubMed ID: 17019293 doi:10.1249/01.mss.0000229570.02037.1d

    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Churilla, J.R., & Bassett, D.R. (2006). Estimating energy expenditure using accelerometers. European Journal of Applied Physiology, 98(6), 601–612. PubMed ID: 17058102 doi:10.1007/s00421-006-0307-5

    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Horton, M., & Bassett, D.R. (2012). Use of a two-regression model for estimating energy expenditure in children. Medicine & Science in Sports & Exercise, 44(6), 1177–1185. PubMed ID: 22143114 doi:10.1249/MSS.0b013e3182447825

    • Search Google Scholar
    • Export Citation
  • Elliott, B.C., & Blanksby, B.A. (1976). A cinematographic analysis of overground and treadmill running by males and females. Medicine and Science in Sports, 8(2), 84–87. PubMed ID: 957936

    • Search Google Scholar
    • Export Citation
  • Farrahi, V., Niemelä, M., Kangas, M., Korpelainen, R., & Jämsä, T. (2019). Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture, 68, 285–299. PubMed ID: 30579037 doi:10.1016/j.gaitpost.2018.12.003

    • Search Google Scholar
    • Export Citation
  • Freedson, P.S., Melanson, E., & Sirard, J. (1998). Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine & Science in Sports & Exercise, 30(5), 777–781. PubMed ID: 9588623 doi:10.1097/00005768-199805000-00021

    • Search Google Scholar
    • Export Citation
  • Fudge, B.W., Wilson, J., Easton, C., Irwin, L., Clark, J., Haddow, O., . . . Pitsiladis, Y.P. (2007). Estimation of oxygen uptake during fast running using accelerometry and heart rate. Medicine & Science in Sports & Exercise, 39(1), 192–198. PubMed ID: 17218902 doi:10.1249/01.mss.0000235884.71487.21

    • Search Google Scholar
    • Export Citation
  • Guinhouya, C.B., Hubert, H., Dupont, G., & Durocher, A. (2005). Relationship Between the MTI Accelerometer (Actigraph) Counts and Running Speed During Continuous and Intermittent Exercise. Journal of Sports Science & Medicine, 4(4), 534–542. PubMed ID: 24501565

    • Search Google Scholar
    • Export Citation
  • Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine & Science in Sports & Exercise, 32(Suppl. 9), S442–S449. doi:10.1097/00005768-200009001-00002

    • Search Google Scholar
    • Export Citation
  • Hendrick, P., Boyd, T., Low, O., Takarangi, K., Paterson, M., Claydon, L., & Milosavljevic, S. (2010). Construct validity of RT3 accelerometer: a comparison of level-ground and treadmill walking at self-selected speeds. Journal of Rehabilitation Research and Development, 47(2), 157–168. PubMed ID: 20593329 doi:10.1682/JRRD.2009.04.0047

    • Search Google Scholar
    • Export Citation
  • Herman Hansen, B., Børtnes, I., Hildebrand, M., Holme, I., Kolle, E., & Anderssen, S.A. (2014). Validity of the ActiGraph GT1M during walking and cycling. Journal of Sports Sciences, 32(6), 510–516. PubMed ID: 24117333 doi:10.1080/02640414.2013.844347

    • Search Google Scholar
    • Export Citation
  • Jensen, M.M., Poulsen, M.K., Alldieck, T., Larsen, R.G., Gade, R., Moeslund, T.B., . . . Franch, J. (2016). Estimation of energy expenditure during treadmill exercise via thermal imaging. Medicine and Science in Sports and Exercise, 48(12), 2571–2579. doi:10.1249/MSS.0000000000001013

    • Search Google Scholar
    • Export Citation
  • John, D., Miller, R., Kozey-Keadle, S., Caldwell, G., & Freedson, P. (2012). Biomechanical examination of the “plateau phenomenon” in ActiGraph vertical activity counts. Physiological Measurement, 33(2), 219–230. PubMed ID: 22260902 doi:10.1088/0967-3334/33/2/219

    • Search Google Scholar
    • Export Citation
  • John, D., Tyo, B., & Bassett, D.R. (2010). Comparison of four ActiGraph accelerometers during walking and running. Medicine & Science in Sports & Exercise, 42(2), 368–374. PubMed ID: 19927022 doi:10.1249/MSS.0b013e3181b3af49

    • Search Google Scholar
    • Export Citation
  • Jørgensen, T., Andersen, L.B., Froberg, K., Maeder, U., Smith, L.von H., & Aadahl, M. (2009). Position statement: Testing physical condition in a population– how good are the methods?,” European Journal of Sport Science, 9(5), 257–267. doi:10.1080/17461390902862664

    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Nyström, C.D., Mora-Gonzalez, J., Löf, M., . . . Ortega, F.B. (2017). Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Medicine, 47(9), 1821–1845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Moore, R.W., Bowles, H.R., Korycinski, R., & Pfeiffer, K.A. (2018). Reporting accelerometer methods in physical activity intervention studies: a systematic review and recommendations for authors. British Journal of Sports Medicine, 52(23), 1507–1516. PubMed ID: 27539504 doi:10.1136/bjsports-2015-095947

    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Mudd, L.M., Biswas, S., & Pfeiffer, K.A. (2015). Energy expenditure prediction using raw accelerometer data in simulated free living. Medicine & Science in Sports & Exercise, 47(8), 1735–1746. PubMed ID: 25494392 doi:10.1249/MSS.0000000000000597

    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Pivarnik, J.M., Mudd, L.M., Biswas, S., & Pfeiffer, K.A. (2016). Validation and comparison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior. AIMS Public Health, 3(2), 298–312. PubMed ID: 29546164 doi:10.3934/publichealth.2016.2.298

    • Search Google Scholar
    • Export Citation
  • Nichols, J.F., Morgan, C.G., Chabot, L.E., Sallis, J.F., & Calfas, K.J. (2000). Assessment of physical activity with the Computer Science and Applications, Inc., accelerometer: laboratory versus field validation. Research Quarterly for Exercise and Sport, 71(1), 36–43. PubMed ID: 10763519 doi:10.1080/02701367.2000.10608878

    • Search Google Scholar
    • Export Citation
  • Reiss, A., & Stricker, D. (2011). Towards global aerobic activity monitoring. Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments, 12:1–12:8. doi:10.1145/2141622.2141637

    • Export Citation
  • Riley, P.O., Dicharry, J., Franz, J., Croce, U.D., Wilder, R.P., & Kerrigan, D.C. (2008). A Kinematics and Kinetic Comparison of Overground and Treadmill Running. Medicine & Science in Sports & Exercise, 40(6), 1093–1100. PubMed ID: 18460996 doi:10.1249/MSS.0b013e3181677530

    • Search Google Scholar
    • Export Citation
  • Riley, P.O., Paolini, G., Della Croce, U., Paylo, K.W., & Kerrigan, D.C. (2007). A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait & Posture, 26(1), 17–24. PubMed ID: 16905322 doi:10.1016/j.gaitpost.2006.07.003

    • Search Google Scholar
    • Export Citation
  • Robergs, R.A. (2014). A critical review of the history of low- to moderate-intensity steady-state VO2 kinetics. Sports Medicine, 44(5), 641–653. PubMed ID: 24563157 doi:10.1007/s40279-014-0161-2

    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., Stone, M.R., & Eston, R.G. (2007). Influence of speed and step frequency during walking and running on motion sensor output. Medicine & Science in Sports & Exercise, 39(4), 716–727. PubMed ID: 17414811 doi:10.1249/mss.0b013e318031126c

    • Search Google Scholar
    • Export Citation
  • Schache, A.G., Blanch, P.D., Rath, D.A., Wrigley, T.V., Starr, R., & Bennell, K.L. (2001). A comparison of overground and treadmill running for measuring the three-dimensional kinematics of the lumbo-pelvic-hip complex. Clinical Biomechanics (Bristol, Avon), 16(8), 667–680. doi:10.1016/S0268-0033(01)00061-4

    • Search Google Scholar
    • Export Citation
  • Schneller, M.B., Bentsen, P., Nielsen, G., Brønd, J.C., Ried-Larsen, M., Mygind, E., & Schipperijn, J. (2017). Measuring Children’s Physical Activity: Compliance Using Skin-Taped Accelerometers. Medicine & Science in Sports & Exercise, 49(6), 1261–1269. PubMed ID: 28181981 doi:10.1249/MSS.0000000000001222

    • Search Google Scholar
    • Export Citation
  • Skotte, J., Korshøj, M., Kristiansen, J., Hanisch, C., & Holtermann, A. (2014). Detection of physical activity types using triaxial accelerometers. Journal of Physical Activity & Health, 11(1), 76–84. PubMed ID: 23249722 doi:10.1123/jpah.2011-0347

    • Search Google Scholar
    • Export Citation
  • Steeves, J.A., Bowles, H.R., McClain, J.J., Dodd, K.W., Brychta, R.J., Wang, J., & Chen, K.Y. (2015). Ability of thigh-worn ActiGraph and activPAL monitors to classify posture and motion. Medicine & Science in Sports & Exercise, 47(5), 952–959. PubMed ID: 25202847 doi:10.1249/MSS.0000000000000497

    • Search Google Scholar
    • Export Citation
  • Swain, D.P., & Franklin, B.A. (2006). Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. The American Journal of Cardiology, 97(1), 141–147. PubMed ID: 16377300 doi:10.1016/j.amjcard.2005.07.130

    • Search Google Scholar
    • Export Citation
  • Swartz, A.M., Strath, S.J., Bassett, D.R., O’Brien, W.L., King, G.A., & Ainsworth, B.E. (2000). Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Medicine & Science in Sports & Exercise, 32(Suppl. 9), S450–S456. doi:10.1097/00005768-200009001-00003

    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., McClain, J.J., Brychta, R.J., & Chen, K.Y. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48(13), 1019–1023. PubMed ID: 24782483 doi:10.1136/bjsports-2014-093546

    • Search Google Scholar
    • Export Citation
  • Vanhelst, J., Zunquin, G., Theunynck, D., Mikulovic, J., Bui-Xuan, G., & Beghin, L. (2009). Equivalence of accelerometer data for walking and running: treadmill versus on land. Journal of Sports Sciences, 27(7), 669–675. PubMed ID: 19424900 doi:10.1080/02640410802680580

    • Search Google Scholar
    • Export Citation
  • Yngve, A., Nilsson, A., Sjostrom, M., & Ekelund, U. (2003). Effect of monitor placement and of activity setting on the MTI accelerometer output. Medicine & Science in Sports & Exercise, 35(2), 320–326. PubMed ID: 12569223 doi:10.1249/01.MSS.0000048829.75758.A0

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 53 53 53
Full Text Views 6 6 6
PDF Downloads 4 4 4