Reported and Device-Based Physical Activity By Race/Ethnic Groups in Young-Old Women

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 University of Pittsburgh
  • 2 Kaiser Permanente Northern California
  • 3 Rush System for Health
  • 4 Baylor University
  • 5 University of Michigan
  • 6 Rush University System for Health
  • 7 Albert Einstein College of Medicine
  • 8 The University of Alabama at Birmingham
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Purpose: To examine racial/ethnic differences in participant-reported and device-based estimates of sedentary and physical activity behaviors and correlations between measurement methods in midlife and young-old women. Methods: Data are from 1,257 Study of Women’s Health Across the Nation participants, aged 60–72 who agreed to participate in an accelerometer protocol and had valid wear time (46% White, 26% Black, 12% Chinese, 10% Japanese, 6% Hispanic). Measures from the Kaiser Physical Activity Scale (KPAS) and ActiGraph wGT3X-BT were summarized overall and by race/ethnic groups. Partial Spearman rank order correlation coefficients between the KPAS and accelerometer were computed overall and by race/ethnic groups. Fisher’s z transformation-derived confidence intervals were calculated to evaluate differences in observed correlations in the various race/ethnic groups, compared to White women. Results: Participants spent an average of 7.5 ± 2.1 h·d−1 in sedentary behaviors, 4.5 ± 1.1 h·d−1 and 2.3 ± 0.8 h·d−1 in low or high light intensity physical activity, respectively, and 56 ± 35 min·d−1 in moderate-to-vigorous intensity physical activity. Time spent in each category differed by race/ethnic group. Overall, correlation coefficients comparing the KPAS domain-specific and total physical activity scores with accelerometry were low to moderate (range: 0.062–0.462), and few statistically significant differences in correlations were noted for race/ethnic groups, compared to White women. Conclusions: Study findings complement prior studies describing sedentary and physical activity behaviors using multi-methods in a diverse population of older women, and provide additional evidence on the convergent validity of the KPAS by race/ethnic groups.

Stewart and Colvin are with the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. Sternfeld is with the Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA. Lange-Maia is with the Department of Preventive Medicine, Center for Community Health Equity, Rush System for Health, Chicago, IL, USA. Ylitalo is with the Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA. Karvonen-Gutierrez is with the Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA. Dugan is with the Department of Physical Medicine and Rehabilitation, Rush University System for Health, Chicago, IL, USA. Green is with The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Jersey City, NJ, USA. Pettee Gabriel is with the Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL, USA.

Pettee Gabriel (gabrielk@uab.edu) is corresponding author.
  • Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Jr., Tudor-Locke, C., . . . Leon, A.S. (2011). 2011 Compendium of Physical Activities: a second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 15751581. PubMed ID: 21681120 doi:10.1249/MSS.0b013e31821ece12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., . . . Leon, A.S. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine & Science in Sports & Exercise, 32(Suppl. 9), S498S504. PubMed ID: 10993420 doi:10.1097/00005768-200009001-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, B.E., Sternfeld, B., Richardson, M.T., & Jackson, K. (2000). Evaluation of the kaiser physical activity survey in women. Medicine & Science in Sports & Exercise, 32(7), 13271338. PubMed ID: 10912901 doi:10.1097/00005768-200007000-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amagasa, S., Fukushima, N., Kikuchi, H., Takamiya, T., Oka, K., & Inoue, S. (2017). Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 59. PubMed ID: 28464833 doi:10.1186/s12966-017-0519-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arem, H., Moore, S.C., Patel, A., Hartge, P., Berrington de Gonzalez, A., Visvanathan, K., . . . Matthews, C.E. (2015). Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Internal Medicine, 175(6), 959967. PubMed ID: 25844730 doi:10.1001/jamainternmed.2015.0533

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise, 43(2), 357364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dugan, S.A., Everson-Rose, S.A., Karavolos, K., Sternfeld, B., Wesley, D., & Powell, L.H. (2009). The impact of physical activity level on SF-36 role-physical and bodily pain indices in midlife women. Journal of Physical Activity and Health, 6(1), 3342. PubMed ID: 19211956 doi:10.1123/jpah.6.1.33

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Wen, F., Herring, A.H., Di, C., LaMonte, M.J., Tinker, L.F., . . . Buchner, D.M. (2015). Calibrating physical activity intensity for hip-worn accelerometry in women age 60 to 91 years: The Women’s Health Initiative OPACH Calibration Study. Preventive Medicine Reports, 2, 750756. PubMed ID: 26527313 doi:10.1016/j.pmedr.2015.08.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gay, J.L., & Buchner, D.M. (2014). Ethnic disparities in objectively measured physical activity may be due to occupational activity. Preventive Medicine, 63, 5862. PubMed ID: 24589439 doi:10.1016/j.ypmed.2014.02.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guralnik, J.M., Simonsick, E.M., Ferrucci, L., Glynn, R.J., Berkman, L.F., Blazer, D.G., . . . Wallace, R.B. (1994). A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. Journals of Gerontology, 49(2), M85M94. PubMed ID: 8126356 doi:10.1093/geronj/49.2.M85

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, M.S., Storti, K.L., Richardson, C.R., King, W.C., Strath, S.J., Holleman, R.G., & Kriska, A.M. (2009). Objectively measured physical activity of USA adults by sex, age, and racial/ethnic groups: a cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 6, 31. PubMed ID: 19493347 doi:10.1186/1479-5868-6-31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keadle, S.K., Shiroma, E.J., Freedson, P.S., & Lee, I.M. (2014). Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study. BMC Public Health, 14, 1210. PubMed ID: 25421941 doi:10.1186/1471-2458-14-1210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kline, C.E., Irish, L.A., Krafty, R.T., Sternfeld, B., Kravitz, H.M., Buysse, D.J., . . . Hall, M.H. (2013). Consistently high sports/exercise activity is associated with better sleep quality, continuity and depth in midlife women: the SWAN sleep study. Sleep, 36(9), 12791288. PubMed ID: 23997360 doi:10.5665/sleep.2946

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriska, A.M., Knowler, W.C., LaPorte, R.E., Drash, A.L., Wing, R.R., Blair, S.N., . . . Kuller, L.H. (1990). Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care, 13(4), 401411. PubMed ID: 2318100 doi:10.2337/diacare.13.4.401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCroix, A.Z., Bellettiere, J., Rillamas-Sun, E., Di, C., Evenson, K.R., Lewis, C.E., . . . Women’s Health Initiative. (2019). Association of light physical activity measured by accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Network Open, 2(3), e190419. PubMed ID: 30874775 doi:10.1001/jamanetworkopen.2019.0419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaMonte, M.J., Buchner, D.M., Rillamas-Sun, E., Di, C., Evenson, K.R., Bellettiere, J., . . . LaCroix, A.Z. (2018). Accelerometer-measured physical activity and mortality in women aged 63 to 99. Journal of the American Geriatrics Society, 66(5), 886894. PubMed ID: 29143320 doi:10.1111/jgs.15201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.M., Shiroma, E.J., Evenson, K.R., Kamada, M., LaCroix, A.Z., & Buring, J.E. (2018). Accelerometer-measured physical activity and sedentary behavior in relation to all-cause mortality: The women’s health study. Circulation, 137(2), 203205. PubMed ID: 29109088 doi:10.1161/CIRCULATIONAHA.117.031300

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.M., Shiroma, E.J., Kamada, M., Bassett, D.R., Matthews, C.E., & Buring, J.E. (2019). Association of step volume and intensity with all-cause mortality in older women. JAMA Internal Medicine, 179(8), 11051112. doi: 10.1001/jamainternmed.2019.0899

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marques, E.A., Baptista, F., Santos, D.A., Silva, A.M., Mota, J., & Sardinha, L.B. (2014). Risk for losing physical independence in older adults: the role of sedentary time, light, and moderate to vigorous physical activity. Maturitas, 79(1), 9195. PubMed ID: 25022468 doi:10.1016/j.maturitas.2014.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Hagstromer, M., Pober, D.M., & Bowles, H.R. (2012). Best practices for using physical activity monitors in population-based research. Medicine & Science in Sports & Exercise, 44(1 Suppl. 1), S68S76. PubMed ID: 22157777 doi:10.1249/MSS.0b013e3182399e5b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettee Gabriel, K., McClain, J.J., Lee, C.D., Swan, P.D., Alvar, B.A., Mitros, M.R., & Ainsworth, B.E. (2009). Evaluation of physical activity measures used in middle-aged women. Medicine & Science in Sports & Exercise, 41(7), 14031412. PubMed ID: 19516161 doi:10.1249/MSS.0b013e31819b2482

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettee Gabriel, K., Sidney, S., Jacobs, D.R., Jr., Whitaker, K.M., Carnethon, M.R., Lewis, C.E., . . . Sternfeld, B. (2018). Ten-year changes in accelerometer-based physical activity and sedentary time during midlife: The CARDIA Study. American Journal of Epidemiology, 187(10), 21452150. PubMed ID: 29893772 doi:10.1093/aje/kwy117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettee Gabriel, K., Sternfeld, B., Colvin, A., Stewart, A., Strotmeyer, E.S., Cauley, J.A., . . . Karvonen-Gutierrez, C. (2017). Physical activity trajectories during midlife and subsequent risk of physical functioning decline in late mid-life: The Study of Women’s Health Across the Nation (SWAN). Preventive Medicine, 105, 287294. PubMed ID: 28987336 doi:10.1016/j.ypmed.2017.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettee Gabriel, K.K., Morrow, J.R., Jr., & Woolsey, A.L. (2012). Framework for physical activity as a complex and multidimensional behavior. Journal of Physical Activity and Health, 9(Suppl. 1), S11S18. doi:10.1123/jpah.9.s1.s11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piercy, K.L., Troiano, R.P., Ballard, R.M., Carlson, S.A., Fulton, J.E., Galuska, D.A., . . . Olson, R.D. (2018). The physical activity guidelines for Americans. JAMA, 320(19), 20202028. PubMed ID: 30418471 doi:10.1001/jama.2018.14854

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiroma, E.J., Freedson, P.S., Trost, S.G., & Lee, I.M. (2013). Patterns of accelerometer-assessed sedentary behavior in older women. JAMA, 310(23), 25622563. PubMed ID: 24346993 doi:10.1001/jama.2013.278896

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sowers, M.F., Crawford, S.L., & Sternfeld, B. (Eds.). (2000). A multicenter, multiethnic, community-based cohort study of women and the menopausal transition. San Diego, CA: Academic Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sternfeld, B., Ainsworth, B.E., & Quesenberry, C.P. (1999). Physical activity patterns in a diverse population of women. Preventive Medicine, 28(3), 313323. PubMed ID: 10072751 doi:10.1006/pmed.1998.0470

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Masse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Pettee Gabriel, K.K., Welk, G.J., Owen, N., & Sternfeld, B. (2012). Reported physical activity and sedentary behavior: why do you ask?,” Journal of Physical Activity and Health, 9(Suppl. 1), S68S75. doi:10.1123/jpah.9.s1.s68

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Department of Health and Human Services. (2018a). 2018 Physical Activity Guidelines Advisory Committee Scientific Report (pp. D1D21). Atlanta, GA: U.S. Department of Health and Human Services. Retrieved from https://health.gov/paguidelines/second-edition/report/pdf/PAG_Advisory_Committee_Report.pdf

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Health and Human Services. (2018b). Physical Activity Guidelines for Americans (2nd ed., p. 8). Atlanta, GA: U.S. Department of Health and Human Services. Retrieved from https://health.gov/sites/default/files/2019-09/PAG_Advisory_Committee_Report.pdf

    • Search Google Scholar
    • Export Citation
  • Ware, J.E., Jr., & Sherbourne, C.D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473483. PubMed ID: 1593914 doi:10.1097/00005650-199206000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 259 259 8
Full Text Views 3 3 0
PDF Downloads 3 3 0