Validation of a Clinically Feasible Activity Monitor Which Measures Body Postures and Movements in Adults With Lower-Limb Amputation Who Wear a Prosthesis

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Libra Rehabilitation & Audiology
  • 2 Erasmus University Medical Center
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Purpose: A simple single-unit activity monitor (Activ8), which is based on a tri-axial accelerometer, measures specific body postures and movements, and has potential for research and clinical practice to monitor and optimize physical behavior of people with chronic conditions. However, the validity of the Activ8 in people with lower-limb amputation is unknown. Studying validity in this specific group is needed because they often have postures and movements that differ from the normal population, and which might affect validity. Therefore our study aimed to validate the Activ8 to measure body postures and movements in people with a lower-limb amputation. Methods: Thirty people with a unilateral lower-limb amputation and who are able to walk with a prosthesis completed two activity protocols in a simulated home setting: one with basic activities (only one posture or movement) and one with functional activities from daily living. Outcomes of the Activ8 (used in thigh-fixed position and pocket position) were compared to outcomes of video observation (the reference method). Primary analyses focused on the agreement in duration of merged measures of physical activity (walking, running, cycling, standing) and sedentary behavior (lying/sitting) with the Activ8 used in thigh-fixed position. Additional analyses included the detection of specific types of physical activity, the effects of amputation level and cause, and the validity of the Activ8 in pocket position. Results: Overall percentage time differences between Activ8 (thigh-fixed position) and video observation for merged measures of physical activity and sedentary behavior outcomes were −2.7% and 2.3%, respectively. These percentages were −1.6% and 1.3% for the basic protocol, and −3.9% and 3.6% for the functional protocol, respectively. For specific postures and movements, differences were larger (ranging from −12.6% to 7.1%). Conclusion: The Activ8 activity monitor has acceptable validity to measure physical activity and sedentary behavior in people with a unilateral lower-limb amputation.

van Rooij, van den Berg-Emons, and de Laat are with Libra Rehabilitation & Audiology, Eindhoven and Tilburg, The Netherlands. van den Berg-Emons, Horemans, Fanchamps, and Bussmann are with Erasmus University Medical Center (Erasmus MC), Rotterdam, the Netherlands.

van Rooij (w.vanrooij@libranet.nl) is corresponding author.
  • Activ8 Physical Activity Monitor. (2017). Retrieved from https://www.activ8all.com

  • Albert, M. V., Deeny, S., McCarthy, C., Valentin, J., & Jayaraman, A. (2014). Monitoring daily function in persons with transfemoral amputations using a commercial activity monitor: a feasibility study. PM & R, 6(12), 11201127. PubMed ID: 24954402 doi:10.1016/j.pmrj.2014.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, H. S., Kim, Y., & Lee, J. M. (2017). Accuracy of inclinometer functions of the ActivPAL and ActiGraph GT3X+: A focus on physical activity. Gait & Posture, 51, 174180. doi:10.1016/j.gaitpost.2016.10.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arch, E. S., Sions, J. M., Horne, J., & Bodt, B. A. (2018). Step count accuracy of StepWatch and FitBit One among individuals with a unilateral transtibial amputation. Prosthetics and Orthotics International, 42(5), 518526. PubMed ID: 29623810 doi:10.1177/0309364618767138

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, A., Oh, P. I., Faulkner, G. E., Bajaj, R. R., Silver, M. A., Mitchell, M. S., & Alter, D. A. (2015). Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Annals of Internal Medicine, 162(2), 123132. PubMed ID: 25599350 doi:10.7326/M14-1651

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, D., Hunter, J. P., Parsons, J., Livsey, E., Quirt, J., & Devlin, M. (2002). Reliability of the two-minute walk test in individuals with transtibial amputation. Archives of Physical Medicine and Rehabilitation, 83(11), 15621565. PubMed ID: 12422326 doi:10.1053/apmr.2002.34600

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buis, A., Dumbleton, T.P., Murray, K., McHugh, B.F., McKay, G., & Sexton, S. (2014). Measuring the daily stepping activity of people with transtibial amputation using the ActivPAL activity monitor. Journal of Prosthetics and Orthotics, 26(1), 4347. doi:10.1097/JPO.0000000000000016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bussmann, H. B., Reuvekamp, P. J., Veltink, P. H., Martens, W. L., & Stam, H. J. (1998). Validity and reliability of measurements obtained with an “activity monitor” in people with and without a transtibial amputation. Physical Therapy, 78(9), 989998. PubMed ID: 9736896 doi:10.1093/ptj/78.9.989

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bussmann, J. B., Grootscholten, E. A., & Stam, H. J. (2004). Daily physical activity and heart rate response in people with a unilateral transtibial amputation for vascular disease. Archives of Physical Medicine and Rehabilitation, 85(2), 240244. PubMed ID: 14966708 doi:10.1016/S0003-9993(03)00485-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bussmann, J. B., & van den Berg-Emons, R. J. (2013). To total amount of activity..... and beyond: perspectives on measuring physical behavior. Frontiers in Psychology, 4, 463. PubMed ID: 23885248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmona, G. A., Lacraz, A., & Assal, M. (2007). [Walking activity in prosthesis-bearing lower-limb amputees]. Revue de chirurgie orthopédique et réparatrice de l’appareil moteur, 93(2), 109115. doi:10.1016/S0035-1040(07)90213-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, C. L., Fields, T., Lev, G., Stephenson, R. O., & Stevens-Lapsley, J. E. (2015). Functional outcomes after the prosthetic training phase of rehabilitation after dysvascular lower extremity amputation. PM & R, 7(11), 11181126. PubMed ID: 25978948 doi:10.1016/j.pmrj.2015.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claridge, E. A., van den Berg-Emons, R. J. G., Horemans, H. L. D., van der Slot, W. M. A., van der Stam, N., Tang, A., . . . Bussmann, J.B.J. (2019). Detection of body postures and movements in ambulatory adults with cerebral palsy: a novel and valid measure of physical behaviour. Journal of NeuroEngineering and Rehabilitation, 16(1), 125. PubMed ID: 31665030 doi:10.1186/s12984-019-0594-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12, 159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fanchamps, M. H. J., Horemans, H. L. D., Ribbers, G. M., Stam, H. J., & Bussmann, J. B. J. (2018). The accuracy of the detection of body postures and movements using a physical activity monitor in people after a stroke. Sensors (Basel), 18(7), 2167. doi:10.3390/s18072167

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleury, A. M., Salih, S. A., & Peel, N. M. (2013). Rehabilitation of the older vascular amputee: a review of the literature. Geriatrics & Gerontology International, 13(2), 264273. PubMed ID: 23279009 doi:10.1111/ggi.12016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortington, L. V., Rommers, G. M., Postema, K., van Netten, J. J., Geertzen, J. H., & Dijkstra, P. U. (2013). Lower limb amputation in Northern Netherlands: unchanged incidence from 1991-1992 to 2003-2004. Prosthetics and Orthotics International, 37(4), 305310. PubMed ID: 23327835 doi:10.1177/0309364612469385

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gailey, R. S., Roach, K. E., Applegate, E. B., Cho, B., Cunniffe, B., Licht, S., & Nash, M.S. (2002). The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Archives of Physical Medicine and Rehabilitation, 83(5), 613627. PubMed ID: 11994800 doi:10.1053/apmr.2002.32309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horemans, H. L. D., Kooijmans, H., van den Berg-Emons, H. J. G., & Bussmann, J. B. J. (2019). The Activ8 activity monitor: validation of posture and movement classification. Journal of Rehabilitation and Assistive Technologies Engineering.

    • Search Google Scholar
    • Export Citation
  • Ladlow, P., Nightingale, T. E., McGuigan, M. P., Bennett, A. N., Phillip, R., & Bilzon, J. L. J. (2017). Impact of anatomical placement of an accelerometer on prediction of physical activity energy expenditure in lower-limb amputees. PLoS ONE, 12(10), e0185731. PubMed ID: 28982199 doi:10.1371/journal.pone.0185731

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langford, J., Dillon, M. P., Granger, C. L., & Barr, C. (2019). Physical activity participation amongst individuals with lower limb amputation. Disability and Rehabilitation, 41(9), 10631070. PubMed ID: 29303002 doi:10.1080/09638288.2017.1422031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindemann, U., Zijlstra, W., Aminian, K., Chastin, S. F., de Bruin, E. D., Helbostad, J. L., & Bussmann, J.B. (2014). Recommendations for standardizing validation procedures assessing physical activity of older persons by monitoring body postures and movements. Sensors (Basel), 14(1), 12671277. doi:10.3390/s140101267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lord, S., Chastin, S. F., McInnes, L., Little, L., Briggs, P., & Rochester, L. (2011). Exploring patterns of daily physical and sedentary behaviour in community-dwelling older adults. Age and Ageing, 40(2), 205210. PubMed ID: 21239410 doi:10.1093/ageing/afq166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nooijen, C. F., de Groot, J. F., Stam, H. J., van den Berg-Emons, R. J., & Bussmann, H. B. (2015). Validation of an activity monitor for children who are partly or completely wheelchair-dependent. Journal of NeuroEngineering and Rehabilitation, 12(1), 11. doi:10.1186/s12984-015-0004-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prinsen, E. C., Nederhand, M. J., & Rietman, J. S. (2011). Adaptation strategies of the lower extremities of patients with a transtibial or transfemoral amputation during level walking: a systematic review. Archives of Physical Medicine and Rehabilitation, 92(8), 13111325. PubMed ID: 21714957 doi:10.1016/j.apmr.2011.01.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rommers, G. M., Vos, L. D., Groothoff, J. W., Schuiling, C. H., & Eisma, W. H. (1997). Epidemiology of lower limb amputees in the north of The Netherlands: aetiology, discharge destination and prosthetic use. Prosthetics and Orthotics International, 21(2), 9299. PubMed ID: 9285952 doi:10.3109/03093649709164536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoppen, T., Boonstra, A., Groothoff, J. W., de Vries, J., Goeken, L. N., & Eisma, W. H. (1999). The Timed “up and go” test: reliability and validity in persons with unilateral lower limb amputation. Archives of Physical Medicine and Rehabilitation, 80(7), 825828. PubMed ID: 10414769 doi:10.1016/S0003-9993(99)90234-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theeven, P., Hemmen, B., Stevens, C., Ilmer, E., Brink, P., & Seelen, H. (2010). Feasibility of a new concept for measuring actual functional performance in daily life of transfemoral amputees. Journal of Rehabilitation Medicine, 42(8), 744751. PubMed ID: 20809056 doi:10.2340/16501977-0591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Berg-Emons, R. J., Bussmann, J. B., & Stam, H. J. (2010). Accelerometry-based activity spectrum in persons with chronic physical conditions. Archives of Physical Medicine and Rehabilitation, 91(12), 18561861. PubMed ID: 21112426 doi:10.1016/j.apmr.2010.08.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Remoortel, H., Giavedoni, S., Raste, Y., Burtin, C., Louvaris, Z., Gimeno-Santos, E., . . . PROactive Consortium. (2012). Validity of activity monitors in health and chronic disease: a systematic review. International Journal of Behavioral Nutrition and Physical Activity, 9, 84. PubMed ID: 22776399 doi:10.1186/1479-5868-9-84

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werkgroep Amputatie en Prothesiologie: Behandelkader Beenamputatie [Working party Amputation and Prosthesiology: prescription protocol for lower limb prostheses]. (2003). Prismant-data. Dutch.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 240 240 21
Full Text Views 4 4 0
PDF Downloads 2 2 0