Review of Validity and Reliability of Garmin Activity Trackers

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 University of North Carolina–Chapel Hill
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Purpose: A systematic review to summarize the validity and reliability of steps, distance, energy expenditure, speed, elevation, heart rate, and sleep assessed by Garmin activity trackers. Methods: Searches included studies published through December 31, 2018. Correlation coefficients (CC) were assessed as low (<0.60), moderate (0.60 to <0.75), good (0.75 to <0.90), or excellent (≥0.90). Mean absolute percentage errors (MAPE) were assessed as acceptable at <5% in controlled conditions and <10% for free-living conditions. Results: Overall, 32 studies of adults documented validity. Four of these studies also documented reliability. The sample size ranged from 1–95 for validity and 4–31 for reliability testing. Step inter- and intra-reliability was good-to-excellent and speed intra-reliability was excellent. No other features were explored for reliability. Step validity, across 16 studies, generally indicated good-to-excellent CC and acceptable MAPE. Distance validity, tested in three studies, generally indicated poor CC and MAPE that exceeded acceptable limits, with both over and underestimation. Energy expenditure validity, across 12 studies, generally indicated wide variability in CC and MAPE that exceeded acceptable limits. Heart rate validity in five studies had low-to-excellent CC and all MAPE exceeded acceptable limits. Speed, elevation, and sleep validity were assessed in only one or two studies each; for sleep, the criterion relied on self-report rather than polysomnography. Conclusion: This systematic review of Garmin activity trackers among adults indicated higher validity of steps; few studies on speed, elevation, and sleep; and lower validity for distance, energy expenditure, and heart rate. Intra- and inter-device feature reliability needs further testing.

Evenson is with the Department of Epidemiology; Spade is with the Department of Health Behavior; Gillings School of Global Public Health, University of North Carolina–Chapel Hill, Chapel Hill, NC, USA.

Evenson (kelly_evenson@unc.edu) is corresponding author.

Supplementary Materials

    • Supplementary File 1 (PDF 83 KB)
    • Supplementary File 2 (PDF 98 KB)
    • Supplementary File 3 (PDF 107 KB)
    • Supplementary File 4 (PDF 138 KB)
    • Supplementary File 5 (PDF 94 KB)
    • Supplementary File 6 (PDF 152 KB)
    • Supplementary File 7 (PDF 254 KB)
    • Supplementary File 8 (PDF 125 KB)
  • Alsubheen, S.A., George, A.M., Baker, A., Rohr, L.E., & Basset, F.A. (2016). Accuracy of the Vivofit activity tracker. Journal of Medical Engineering & Technology, 40, 298306. PubMed ID: 27266422 doi:10.1080/03091902.2016.1193238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ammann, R., Taube, W., Neuhaus, M., & Wyss, T. (2016). The influence of the gait-related arm swing on elevation gain measured by sport watches. Journal of Human Kinetics, 51, 5360. PubMed ID: 28149368 doi:10.1515/hukin-2015-0170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, H.S., Jones, G.C., Kang, S.K., Welk, G.J., & Lee, J.M. (2017). How valid are wearable physical activity trackers for measuring steps? European Journal of Sport Science, 17, 360368. PubMed ID: 27912681 doi:10.1080/17461391.2016.1255261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baron, K.G., Duffecy, J., Berendsen, M.A., Cheung Mason, I., Lattie, E.G., & Manalo, N.C. (2018). Feeling validated yet? A scoping review of the use of consumer-targeted wearable and mobile technology to measure and improve sleep. Sleep Medicine Reviews, 40, 151159. PubMed ID: 29395985 doi:10.1016/j.smrv.2017.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bland, J., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327, 307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudreaux, B.D., Hebert, E.P., Hollander, D.B., Williams, B.M., Cormier, C.L., Naquin, M.R., . . . Kraemer, R.R. (2018). Validity of wearable activity monitors during cycling and resistance exercise. Medicine & Science in Sports & Exercise, 50, 624633. PubMed ID: 29189666 doi:10.1249/MSS.0000000000001471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooke, S.M., An, H.S., Kang, S.K., Noble, J.M., Berg, K.E., & Lee, J.M. (2017). Concurrent validity of wearable activity trackers under free-living conditions. Journal of Strength and Conditioning Research, 31, 10971106. PubMed ID: 27465631 doi:10.1519/JSC.0000000000001571

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadmus-Bertram, L., Gangnon, R., Wirkus, E.J., Thraen-Borowski, K.M., & Gorzelitz-Liebhauser, J. (2017). The accuracy of heart rate monitoring by some wrist-worn activity trackers. Annals of Internal Medicine, 166, 610612. PubMed ID: 28395305 doi:10.7326/L16-0353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassirame, J., Vanhaesebrouck, R., Chevrolat, S., & Mourot, L. (2017). Accuracy of the Garmin 920 XT HRM to perform HRV analysis. Australasian Physical and Engineering Sciences in Medicine, 40, 831839. PubMed ID: 29058222 doi:10.1007/s13246-017-0593-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M.D., Kuo, C.C., Pellegrini, C.A., & Hsu, M.J. (2016). Accuracy of wristband activity monitors during ambulation and activities. Medicine & Science in Sports & Exercise, 48, 19421949. PubMed ID: 27183123 doi:10.1249/MSS.0000000000000984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claes, J., Buys, R., Avila, A., Finlay, D., Kennedy, A., Guldenring, D., . . . Cornelissen, V. (2017). Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities. Journal of Medical Engineering & Technology, 41, 480485. PubMed ID: 28675070 doi:10.1080/03091902.2017.1333166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Schneider, P.L., Karabulut, M., & Bassett, D.R., Jr. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine & Science in Sports & Exercise, 35, 14551460. PubMed ID: 12900704 doi:10.1249/01.MSS.0000078932.61440.A2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, H.J., Kooiman, T.J., van Ittersum, M.W., van Brussel, M., & de Groot, M. (2016). Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity, 24, 20782091. PubMed ID: 27670401 doi:10.1002/oby.21619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Vries, S.I., Van Hirtum, H.W., Bakker, I., Hopman-Rock, M., Hirasing, R.A., & Van Mechelen, W. (2009). Validity and reproducibility of motion sensors in youth: a systematic update. Medicine & Science in Sports & Exercise, 41, 818827. PubMed ID: 19276851 doi:10.1249/MSS.0b013e31818e5819

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dooley, E.E., Golaszewski, N.M., & Bartholomew, J.B. (2017). Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR mHealth and uHealth, 5, e34. PubMed ID: 28302596 doi:10.2196/mhealth.7043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, M.J., Brennan, M.L., Williams, H.C., & Dean, R.S. (2016). Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open, 6, e011458. PubMed ID: 27932337 doi:10.1136/bmjopen-2016-011458

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duking, P., Fuss, F.K., Holmberg, H.C., & Sperlich, B. (2018). Recommendations for assessment of the reliability, sensitivity, and validity of data provided by wearable sensors designed for monitoring physical activity. JMIR mHealth and uHealth, 6, e102. PubMed ID: 29712629 doi:10.2196/mhealth.9341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M.J., Mummery, W.K., & Dascombe, B.J. (2007). Utility of global positioning system to measure active transport in urban areas. Medicine & Science in Sports & Exercise, 39, 18511857. PubMed ID: 17909415 doi:10.1249/mss.0b013e31811ff31e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrler, F., Weber, C., & Lovis, C. (2016). Influence of pedometer position on pedometer accuracy at various walking speeds: A comparative study. Journal of Medical Internet Research, 18, e268. PubMed ID: 27713114 doi:10.2196/jmir.5916

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El-Amrawy, F., & Nounou, M.I. (2015). Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthcare Informatics Research, 21, 315320. PubMed ID: 26618039 doi:10.4258/hir.2015.21.4.315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Goto, M.M., & Furberg, R.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12, 159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fokkema, T., Kooiman, T.J., Krijnen, W.P., Van Der Schans, C.P., & Groot, D.E. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine & Science in Sports & Exercise, 49, 793800. PubMed ID: 28319983 doi:10.1249/MSS.0000000000001146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garmin. (2018). New advanced sleep monitoring in Garmin Connect. Retrieved from https://www.garmin.com/en-US/blog/fitness/advancedrem/

    • Export Citation
  • Garmin. (2019a). Calorie terminology. Retrieved from https://support.garmin.com/en-GB/?faq=lkl4cwCLlK7ox362uGQEV7

    • Export Citation
  • Garmin. (2019b). Garmin disclaimer: Activity tracking and fitness metric accuracy. Retrieved from https://www.garmin.com/en-US/legal/atdisclaimer

    • Export Citation
  • Garmin. (2019c). Improving the accuracy of the optical heart rate sensor. Retrieved from https://support.garmin.com/en-US/?faq=xQwjQjzUew4BF1GYcusE59

    • Export Citation
  • Gaz, D.V., Rieck, T.M., Peterson, N.W., Ferguson, J.A., Schroeder, D.R., Dunfee, H.A., . . . Hagen, P.T. (2018). Determining the validity and accuracy of multiple activity-tracking devices in controlled and free-walking conditions. American Journal of Health Promotion, 32, 16711678. PubMed ID: 29558811 doi:10.1177/0890117118763273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillinov, S., Etiwy, M., Wang, R., Blackburn, G., Phelan, D., Gillinov, A.M., . . . Desai, M.Y. (2017). Variable accuracy of wearable heart rate monitors during aerobic exercise. Medicine & Science in Sports & Exercise, 49, 16971703. PubMed ID: 28709155 doi:10.1249/MSS.0000000000001284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gloersen, O., Kocbach, J., & Gilgien, M. (2018). Tracking performance in endurance racing sports: Evaluation of the accuracy offered by three commercial GNSS receivers aimed at the sports market. Frontiers in Physiology 9, 1425. PubMed ID: 30356794 doi:10.3389/fphys.2018.01425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallo, J.C., Manning, R.E., Valliere, W., & Budruk, M. (2005). A case study comparison of visitor self-reported and GPS recorded travel routes. Proceedings of the 2004 Northeastern Recreation Research Symposium, General Technical Report, NE-326, 172177. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Radnor, PA.

    • Export Citation
  • Henriksen, A., Haugen Mikalsen, M., Woldaregay, A.Z., Muzny, M., Hartvigsen, G., Hopstock, L.A., & Grimsgaard, S. (2018). Using fitness trackers and smartwatches to measure physical activity in research: Analysis of Consumer Wrist-Worn Wearables. Journal of Medical Internet Research, 20, e110. PubMed ID: 29567635 doi:10.2196/jmir.9157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, P.A., & Straub, A.J. (2006). Understanding the error of our ways: mapping the concepts of validity and reliability. Nursing Outlook, 54, 2329. PubMed ID: 16487776 doi:10.1016/j.outlook.2004.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hochsmann, C., Knaier, R., Eymann, J., Hintermann, J., Infanger, D., & Schmidt-Trucksass, A. (2018). Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scandinavian Journal of Medicine & Science in Sports, 28(7), 18181827. PubMed ID: 29460319 doi:10.1111/sms.13074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hongu, N., Orr, B.J., Roe, D.J., Reed, R.G., & Going, S.B. (2013). Global positioning system watches for estimating energy expenditure. Journal of Strength and Conditioning Research, 27, 32163220. PubMed ID: 23439338 doi:10.1519/JSC.0b013e31828bae0f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovsepian, D., Meardon, S.A., & Kernozek, T.W. (2014). Consistency and agreement of two devices for running speed. Athletic Training & Sports Health Care, 6, 6772. doi:10.3928/19425864-20140306-02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.J., Xu, J.K., Yu, B., & Shull, P.B. (2016). Validity of FitBit, Jawbone UP, Nike Plus and other wearable devices for level and stair walking. Gait & Posture, 48, 3641. PubMed ID: 27477705 doi:10.1016/j.gaitpost.2016.04.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Data Corporation. (2018). Worldwide wearables market ticks up 5.5% due to gains in emerging markets, says IDC. Retrieved from https://www.idc.com/getdoc.jsp?containerId=prUS44247418

    • Export Citation
  • Jo, E., Lewis, K., Directo, D., Kim, M.J., & Dolezal, B.A. (2016). Validation of biofeedback wearables for photoplethysmographic heart rate tracking. Journal of Sports Science and Medicine, 15, 540547. PubMed ID: 27803634

    • Search Google Scholar
    • Export Citation
  • Kolla, B.P., Mansukhani, S., & Mansukhani, M.P. (2016). Consumer sleep tracking devices: A review of mechanisms, validity and utility. Expert Review of Medical Devices, 13, 497506. PubMed ID: 27043070 doi:10.1586/17434440.2016.1171708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamont, R.M., Daniel, H.L., Payne, C.L., & Brauer, S.G. (2018). Accuracy of wearable physical activity trackers in people with Parkinson’s disease. Gait & Posture, 63, 104108. PubMed ID: 29729611 doi:10.1016/j.gaitpost.2018.04.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.M., Byun, W., Keill, A., Dinkel, D., & Seo, Y. (2018). Comparison of wearable trackers’ ability to estimate sleep. International Journal of Environmental Research and Public Health, 15(6), 1265. doi:10.3390/ijerph15061265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leth, S., Hansen, J., Nielsen, O.W., & Dinesen, B. (2017). Evaluation of commercial self-monitoring devices for clinical purposes: results from the future patient trial, phase I. Sensors, 17(1), 211. doi:10.3390/s17010211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madigan, E.A. (2019). Fitness band accuracy in older community dwelling adults. Health Informatics Journal, 25(3), 676682. PubMed ID: 28743215 doi:10.1177/1460458217720399

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menaspà, P., Impellizzeri, F.M., Haakonssen, E.C., Martin, D.T., & Abbiss, C.R. (2014). Consistency of commercial devices for measuring elevation gain. International Journal of Sports Physiology & Performance, 9, 884886. doi:10.1123/ijspp.2013-0232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, R., Quinlan, L.R., Corley, G., Godfrey, A., Osborough, C., & O’Laighin, G. (2017). Evaluation of the Finis Swimsense (R) and the Garmin Swim (TM) activity monitors for swimming performance and stroke kinematics analysis. PLoS ONE, 12(2), e0170902. doi:10.1371/journal.pone.0170902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munck, K., Hummeluhr Christensen, M., Tahhan, A., Dinesen, B., Spindler, H., Hansen, J., . . . Leth, S. (2018). Evaluation of self-trackers for use in telerehabilitation. Journal of Usability Studies, 13, 125137.

    • Search Google Scholar
    • Export Citation
  • Muoio, D. (2018). Garmin, ActiGraph partner on wearable-driven medical research. Mobile Health News. Retrieved from https://www.mobihealthnews.com/content/garmin-actigraph-partner-wearable-driven-medical-research.

    • Search Google Scholar
    • Export Citation
  • Nelson, M.B., Kaminsky, L.A., Dickin, D.C., & Montoye, A.H. (2016). Validity of consumer-based physical activity monitors for specific activity types. Medicine & Science in Sports & Exercise, 48, 16191628. PubMed ID: 27015387 doi:10.1249/MSS.0000000000000933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connell, S., ÓLaighin, G., Kelly, L., Murphy, E., Beirne, S., Burke, N., . . . Quinlan, L.R. (2016). These shoes are made for walking: sensitivity performance evaluation of commercial activity monitors under the expected conditions and circumstances required to achieve the international daily step goal of 10, 000 steps. PLoS ONE, 11, e0154956. doi:10.1371/journal.pone.0154956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plasqui, G., Bonomi, A.G., & Westerterp, K.R. (2013). Daily physical activity assessment with accelerometers: new insights and validation studies. Obesity Reviews, 14, 451462. PubMed ID: 23398786 doi:10.1111/obr.12021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pribyslavska, V., Caputo, J.L., Coons, J.M., & Barry, V.W. (2018). Impact of EPOC adjustment on estimation of energy expenditure using activity monitors. Journal of Medical Engineering & Technology, 42, 265273. PubMed ID: 29911930 doi:10.1080/03091902.2018.1472823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, K., Bird, S.R., Lythgo, N., Raj, I.S., Wong, J.Y., & Lynch, C. (2017). Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. Journal of Medical Engineering & Technology, 41, 208215. PubMed ID: 27919170 doi:10.1080/03091902.2016.1253795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reddy, R.K., Pooni, R., Zaharieva, D.P., Senf, B., El Youssef, J., Dassau, E., . . . Jacobs, P.G. (2018). Accuracy of wrist-worn activity monitors during common daily physical activities and types of structured exercise: evaluation study. JMIR mHealth and uHealth, 6, e10338. PubMed ID: 30530451 doi:10.2196/10338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roos, L., Taube, W., Beeler, N., & Wyss, T. (2017). Validity of sports watches when estimating energy expenditure during running. BMC Sports Science, Medicine and Rehabilitation, 9, 22. PubMed ID: 29296281 doi:10.1186/s13102-017-0089-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sainani, K. (2010). The importance of accounting for correlated observations. Physical Medicine and Rehabilitation, 2, 858861.

  • Sears, T., Avalos, E., Lawson, S., McAlister, I.A.N., Eschbach, C., & Bunn, J. (2017). Wrist-worn physical activity trackers tend to underestimate steps during walking. International Journal of Exercise Science, 10, 764773.

    • Search Google Scholar
    • Export Citation
  • Simunek, A., Dygryn, J., Gaba, A., Jakubec, L., Stelzer, J., & Chmelik, F. (2016). Validity of Garmin Vivofit and Polar Loop for measuring daily step counts in free-living conditions in adults. Acta Gymnica, 46, 129135. doi:10.5507/ag.2016.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straiton, N., Alharbi, M., Bauman, A., Neubeck, L., Gullick, J., Bhindi, R., & Gallagher, R. (2018). The validity and reliability of consumer-grade activity trackers in older, community-dwelling adults: A systematic review. Maturitas, 112, 8593. PubMed ID: 29704922 doi:10.1016/j.maturitas.2018.03.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strath, S.J., & Rowley, T.W. (2018). Wearables for promoting physical activity. Clinical Chemistry, 64, 5363. PubMed ID: 29118062 doi:10.1373/clinchem.2017.272369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. (2019). Worldwide survey of fitness trends for 2019. ACSM Health Fitness Journal, 22, 1017. doi:10.1249/FIT.0000000000000438

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treacy, D., Hassett, L., Schurr, K., Chagpar, S., Paul, S.S., & Sherrington, C. (2017). Validity of different activity monitors to count steps in an inpatient rehabilitation setting. Physical Therapy, 97, 581588. PubMed ID: 28339904 doi:10.1093/ptj/pzx010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Sisson, S.B., Lee, S.M., Craig, C.L., Plotnikoff, R.C., & Bauman, A. (2006). Evaluation of quality of commercial pedometers. Canadian Journal of Public Health, 97(Suppl. 1), S10S16. doi:10.1007/BF03405359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, Y., Duking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in Physiology, 8, 725. PubMed ID: 29018355 doi:10.3389/fphys.2017.00725

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallen, M.P., Gomersall, S.R., Keating, S.E., Wisloff, U., & Coombes, J.S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS ONE, 11, e0154420. PubMed ID: 27232714 doi:10.1371/journal.pone.0154420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., Liu, T., Wang, Y.H., Li, Q.Q., Yi, J.G., & Inoue, Y. (2017). Evaluation on step counting performance of wristband activity monitors in daily living environment. IEEE Access, 5, 1302013027. doi:10.1109/ACCESS.2017.2721098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G., Morrow, J., & Saint-Maurice, P. (2017). Measures registry user guide: Individual physical activity. Washington, DC: National Collaborative on Childhood Obesity Research. Retrieved from http://nccor.org/tools-mruserguides/wp-content/uploads/2017/NCCOR_MR_User_Guide_Individual_PA-FINAL.pdf

    • Search Google Scholar
    • Export Citation
  • Welk, G.J., Bai, Y., Lee, J.M., Godino, J., Saint-Maurice, P.F., & Carr, L. (2019). Standardizing analytic methods and reporting in activity monitor validation studies. Medicine & Science in Sports & Exercise, 51, 17671780. PubMed ID: 30913159 doi:10.1249/MSS.0000000000001966

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieters, K.M., Kim, J.H., & Lee, C. (2012). Assessment of wearable global positioning system units for physical activity research. Journal of Physical Activity and Health, 9, 913923. PubMed ID: 21975729 doi:10.1123/jpah.9.7.913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodman, J.A., Crouter, S.E., Bassett, D.R., Jr., Fitzhugh, E.C., & Boyer, W.R. (2017). Accuracy of consumer monitors for estimating energy expenditure and activity type. Medicine & Science in Sports & Exercise, 49, 371377. PubMed ID: 27580155 doi:10.1249/MSS.0000000000001090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, S.P., Hall Brown, T.S., Collier, S.R., & Sandberg, K. (2017). How consumer physical activity monitors could transform human physiology research. American Journal of Physiology, 312, R358R367. PubMed ID: 28052867

    • Search Google Scholar
    • Export Citation
  • Yavelberg, L., Zaharieva, D., Cinar, A., Riddell, M.C., & Jamnik, V. (2018). A pilot study validating select research-grade and consumer-based wearables throughout a range of dynamic exercise intensities in persons with and without type 1 diabetes: A novel approach. Journal of Diabetes Science and Technology, 12(3), 569576. PubMed ID: 29320885 doi:10.1177/1932296817750401

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 796 796 255
Full Text Views 294 294 3
PDF Downloads 75 75 1