Body-Worn Sensors Are a Valid Alternative to Forceplates for Measuring Balance in Children

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 National Institutes of Health
  • 2 Oregon Health & Science University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Aims: Clinical evaluation of balance has relied on forceplate systems as the gold standard for postural sway measures. Recently, systems based on wireless inertial sensors have been explored, mostly in the adult population, as an alternative given their practicality and lower cost. Our goal was to validate body-worn sensors against forceplate balance measures in typically developing children during tests of quiet stance. Methods: 18 participants (8 males) 7 to 17 years old performed a quiet stance test standing on a forceplate while wearing 3 inertial sensors. Three 30-second trials were performed under 4 conditions: firm surface with eyes open and closed, and foam surface with eyes open and closed. Sway area, path length, and sway velocity were calculated. Results: We found 20 significant and 8 non-significant correlations. Variables found to be significant were represented across all conditions, except for the foam eyes closed condition. Conclusions: These results support the validity of wearable sensors in measuring postural sway in children. Inertial sensors may represent a viable alternative to the gold standard forceplate to test static balance in children.

Shieh, Sansare, Jain, Bulea, and Zampieri are with the Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD. Mancini is with the Department of Neurology, Oregon Health & Science University, Portland, OR.

Jain (mjain@nih.gov) is corresponding author.
  • Alberts, J.L., Hirsch, J.R., Koop, M.M., Schindler, D.D., Kana, D.E., Linder, S.M., & Thota, A.K. (2015). Using accelerometer and gyroscopic measures to quantify postural stability. Journal of Athletic Training, 50(6), 578588. PubMed ID: 25844853 doi:10.4085/1062-6050-50.2.01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, M., Micarelli, A., Viziano, A., Pavone, I., Costantini, G., Casali, D., & Saggio, G. (2017). Body-worn triaxial accelerometer coherence and reliability related to static posturography in unilateral vestibular failure. Acta Otorhinolaryngologica Italica, 37(3), 231236. PubMed ID: 28516967 doi:10.14639/0392-100X-1334

    • Search Google Scholar
    • Export Citation
  • Barozzi, S., Socci, M., Soi, D., Di Berardino, F., Fabio, G., Forti, S., & Cesarani, A. (2007). Reliability of postural control measures in children and young adolescents. European Archive of Otorhinolaryngology, 271(7), 20692077. PubMed ID: 24557440 doi:10.1007/s00405-014-2930-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baston, C., Mancini, M., Schoneburg, B., Horak, F., & Rocchi, L. (2014). Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects. Gait & Posture, 40(1), 7075. PubMed ID: 24656713 doi:10.1016/j.gaitpost.2014.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berkner, J., Meehan, W.P., Master, C.L., & Howell, D.R. (2017). Gait and quiet-stance performance among adolescents after concussion-symptom resolution. Journal of Athletic Training, 52(12), 10891095. PubMed ID: 29154694 doi:10.4085/1062-6050-52.11.23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourelle, S., Berge, B., Gautheron, V., & Cottalorda, J. (2010). Computerized static posturographic assessment after treatment of equinus deformity in children with cerebral palsy. Journal of Pediatric Orthopaedics B, 19(3), 211220. PubMed ID: 20101192 doi:10.1097/BPB.0b013e32832e957a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrick, F.R., Pagnacco, G., Hankir, A., Abdulrahman, M., Zaman, R., Kalambaheti, E.R., . . . Oggero, E. (2018). The treatment of autism spectrum disorder with auditory neurofeedback: A randomized placebo controlled trial using the mente autism device. Frontiers in Neurology, 9, 537. PubMed ID: 30026726 doi:10.3389/fneur.2018.00537

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casselbrant, M.L., Furman, J.M., Rubenstein, E., & Mandel, E.M. (1996). Effect of otitis media on the vestibular system in children. Annals of Otology, Rhinology, and Laryngology, 104(8), 620624. PubMed ID: 7639471 doi:10.1177/000348949510400806

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christy, J.B., Payne, J., Azuero, A., & Formby, C. (2014). Reliability and diagnostic accuracy of clinical tests of vestibular function for children. Pediatric Physical Therapy, 26(2), 180189. PubMed ID: 24675116 doi:10.1097/PEP.0000000000000039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croarkin, E., Eisenfeld, R., Zampieri, C., & Rekant, J. (2015). Custom orthotics to mitigate effects of chemotherapy-induced peripheral neuropathy. Rehabilitation Oncology, 33(3), 4350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cumberworth, V.L., Patel, N.N., Rogers, W., & Kenyon, G.S. (2007). The maturation of balance in children. Journal of Laryngology & Otology, 121(5), 449454. PubMed ID: 17105679 doi:10.1017/S0022215106004051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiFabio, R.P. (2013). Chapter 7: Associations among clinical variables. In Essential of Rehabilitation Research. A Statistical Guide to Clinical Practice (pp. 93109). Philadelphia, PA: F.A. Davis Company.

    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavioral Research Methods, 39(2), 175191. PubMed ID: 17695343 doi:10.3758/bf03193146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, L., Gera, G., Horak, F.B., Blackinton, M.T., Besch, M., & King, L. (2018). Instrumented test of sensory integration for balance: A validation study. Journal of Geriatric Physical Therapy, 41(2), 7784. PubMed ID: 27893564 doi:10.1519/JPT.0000000000000110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, I., Swaine, B., Friedman, D., & Forget, R. (2004). Children show decreased dynamic balance after mild traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 85(3), 444452. PubMed ID: 15031831 doi:10.1016/j.apmr.2003.06.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gera, G., Chesnutt, J., Mancini, M., Horak, F.B., & King, L.A. (2018). Inertial sensor-based assessment of central sensory integration for balance after mild traumatic brain injury. Military Medicine, 183(Suppl. 1), 327332. PubMed ID: 29635623 doi:10.1093/milmed/usx162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goulème, N., Debue, M., Spruyt, K., Vanderveken, C., De Siati, R.D., Ortega-Solis, J., & Deggouj, N. (2018). Changes of spatial and temporal characteristics of dynamic postural control in children with typical neurodevelopment with age: Results of a multicenter pediatric study. International Journal of Pediatric Otorhinolaryngology, 113, 272280. PubMed ID: 30174000 doi:10.1016/j.ijporl.2018.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guskiewicz, K.M. (2011). Balance assessment in the management of sport-related concussion. Clinics in Sports Medicine, 30(1), 89102. PubMed ID: 21074084 doi:10.1016/j.csm.2010.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harro, C.C., & Garascia, C. (2019). Reliability and validity of computerized force platform measures of balance function in healthy older adults. Journal of Geriatric Physical Therapy, 42(3), e57e66. PubMed ID: 29324510 doi:10.1519/JPT.0000000000000175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heebner, N.R., Akins, J.S., Lephart, S.M., & Sell, T.C. (2015). Reliability and validity of an accelerometry based measure of static and dynamic postural stability in healthy and active individuals. Gait & Posture, 41(2), 535539. PubMed ID: 25544692 doi:10.1016/j.gaitpost.2014.12.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F., King, L., & Mancini, M. (2015). Role of body-worn movement monitor technology for balance and gait rehabilitation. Physical Therapy, 95(3), 110. PubMed ID: 25504484 doi:10.2522/ptj.20140253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, Y.L., Chung, P.C., Wang, W.H., Pai, M.C., Wang, C.Y., Lin, C.W., & Wang, J.S. (2014). Gait and balance analysis for patients with alzheimer’s disease using an inertial-sensor-based wearable instrument. IEEE Journal of Biomedical & Health Informatics, 18(6), 18221830. PubMed ID: 25375679 doi:10.1109/JBHI.2014.2325413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klavina, A., Zusa-Rodke, A., & Galeja, Z. (2017). The assessment of static balance in children with hearing, visual and intellectual disabilities. Acta Gymnica, 47, 105111. doi:10.5507/ag.2017.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, H.F., Mao, P.J., & Hwang, A.W. (2001). Test-retest reliability of balance tests in children with cerebral palsy. Developmental Medicine & Child Neurology, 43(3), 1806. PubMed ID: 11263688.

    • Search Google Scholar
    • Export Citation
  • Maïano, C., Hue, O., Tracey, D., Lepage, G., Morin, A.J.S., & Moullec, G. (2018). Static postural control among school-aged youth with Down syndrome: A systematic review. Gait & Posture, 62, 426433. PubMed ID: 29653404 doi:10.1016/j.gaitpost.2018.03.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mancini, M., & Horak, F.B. (2010). The relevance of clinical balance assessment tools to differentiate balance deficits. European Journal of Physical & Rehabilitation Medicine, 46(2), 23948. PubMed ID: 20485226.

    • Search Google Scholar
    • Export Citation
  • Mancini, M., King, L., Salarian, A., Holmstrom, L., McNames, J., & Horak, F.B. (2001). Mobility lab to assess balance and gait with synchronized body-worn sensors. Journal of Bioengineering & Biomedical Science, (Vol. 9, Suppl. 1):007. PubMed ID: 24955286 doi:10.4172/2155-9538.S1-007

    • Search Google Scholar
    • Export Citation
  • Mancini, M., Salarian, A., Carlson-Kuhta, P., Zampieri, C., King, L., Chiari, L., & Horak, F.B. (2012). ISway: A sensitive, valid and reliable measure of postural control. Journal of NeuroEngineering & Rehabilitation, 9, 59. PubMed ID: 22913719 doi:10.1186/1743-0003-9-59

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Memari, A.H., Ghanouni, P., Shayestehfar, M., & Ghaheri, B. (2017). Postural control impairments in individuals with autism spectrum disorder: A Critical review of current literature. Asian Journal of Sports Medicine, 5(3), e22963. PubMed ID: 25520765 doi:10.5812/asjsm.22963

    • Search Google Scholar
    • Export Citation
  • Pavão, S.L., dos Santos, A.N., Woollacott, M.H., & Rocha, N.A. (2013). Assessment of postural control in children with cerebral palsy: A review. Research in Developmental Disabilities, 34(5), 13671375. PubMed ID: 23466474 doi:10.1016/j.ridd.2013.01.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portney, L.G., & Watkins, M.P. (2009). Foundations of clinical research, applications to practice (2nd ed., pp. 491508) Upper Saddle River, NJ: Prentice Hall Health.

    • Search Google Scholar
    • Export Citation
  • Ramos, V., Naylor, M., Demanuele, C., Zhang, H., Amato, S., Hameed, F., . . . Karlin, D. (2018). Wearable inertial sensor technology produces endpoints with good reliability in healthy volunteers and can detect changes in Parkinson’s disease patients with levodopa. Neurology, 90(Suppl. 15):086.

    • Search Google Scholar
    • Export Citation
  • Rouis, A., Rezzoug, N., & Gorce, P. (2014). Validity of a low-cost wearable device for body sway parameter evaluation. Computer Methods in Biomechanics & Biomedical Engineering, 17(Suppl. 1), 182183. PubMed ID: 25074225 doi:10.1080/10255842.2014.931671

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, N.W., Koutakis, P., Kloos, A.D., Kegelmeyer, D.A., Dicke, J.D., & Devor, S.T. (2015). Reliability and validity of a wireless accelerometer for the assessment of postural sway. Journal of Applied Biomechanics, 31(3), 159163. PubMed ID: 25558822 doi:10.1123/jab.2014-0232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwenk, M., Mohler, J., Wendel, C., D’Huyvetter, K., Fain, M., Taylor-Piliae, R., & Najafi, B. (2015). Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: Baseline results of the Arizona frailty cohort study. Gerontology, 61(3), 258267. PubMed ID: 25547185 doi:10.1159/000369095

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivarajah, L., Kane, K.J., Lanovaz, J., Bisaro, D., Oates, A., Ye, M., & Musselman, K.E. (2018). The feasibility and validity of body-worn sensors to supplement timed walking tests for children with neurological conditions. Physical & Occupational Therapy in Pediatrics, 38(3), 280290. PubMed ID: 28880702 doi:10.1080/01942638.2017.1357066

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spain, R.I., St George, R.J., Salarian, A., Mancini, M., Wagner, J.M., Horak, F.B., & Bourdette, D. (2012). Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait & Posture, 35(4), 573578. PubMed ID: 22277368 doi:10.1016/j.gaitpost.2011.11.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steindl, R., Kunz, K., Schrott-Fischer, A., & Scholtz, A.W. (2006). Effect of age and sex on maturation of sensory systems and balance control. Developmental Medicine & Child Neurology, 48(6), 477482. PubMed ID: 16700940 doi:10.1017/S0012162206001022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbecque, E., Vereeck, L., & Hallemans, A. (2016). Postural sway in children: A literature review. Gait & Posture, 49, 402410. PubMed ID: 27505144 doi:10.1016/j.gaitpost.2016.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, S.L., Roche, J.L., Marchetti, G.F., Lin, C.C., Steed, D.P., Furman, G.R., . . . Redfern, M.S. (2011). A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: A measure of balance. Gait Posture, 33(4), 594599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C.J., Lavender, V., Meinzen-Derr, J.K., Cohen, A.P., Youssif, M., Castiglione, M., . . . Greinwald, J.H. (2016). Vestibular pathology in children with enlarged vestibular aqueduct. Laryngoscope, 126(10), 23442350. PubMed ID: 26864825 doi:10.1002/lary.25890

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J.G., & Horak, F.B. (2010). The instrumented Timed Up and Go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease. Journal of Neurology, Neurosurgery, & Psychiatry, 81(2), 171176. PubMed ID: 19726406 doi:10.1136/jnnp.2009.173740

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 73 73 8
Full Text Views 14 14 0
PDF Downloads 9 9 0