Reliability and Criterion-Related Validity of the activPAL Accelerometer When Measuring Physical Activity and Sedentary Behavior in Adults With Lower Limb Absence

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 University of Strathclyde
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Introduction: Accurate measurement of physical behavior in adults with lower limb absence is essential to report true patterns of physical behavior and the effectiveness of interventions. The effect of placing accelerometers on prostheses may also affect the reliability and validity. Purpose: To assess reliability and criterion-related validity of the activPAL for measuring incidental and purposeful stepping, and reclining and stepping time in adults with unilateral lower limb absence. Methods: 15 adults with unilateral lower limb absence completed simulated lifestyle activities in a laboratory setting that were retrospectively scored via video analysis. Objective data were obtained simultaneously from two activPAL monitors placed on the sound and prosthetic side. Data were analyzed using one-way intraclass correlation coefficients (ICC), paired t-tests and Cohen’s d. Results: Reliability (prosthetic side vs. sound side) was poor for incidental steps (ICC = .05, d = 0.48) but acceptable for all other measures (ICC = .77–.88; d = .00–.18). Mean activPAL measures, although highly related to the criterion, underestimated, on average, stepping and time-related variables. Differences were large for all stepping variables (d = .38–.96). Conclusions: The activPAL is a reliable measurement tool in adults with lower limb absence when used in a laboratory setting. Placement of the monitor on the sound side limb is recommended for testing. The activPAL shows evidence of relative validity, but not absolute validity. Further evaluation is needed to assess whether similar evidence is found in free-living activity and sedentary contexts.

Deans and McGarry are with the Department of Biomedical Engineering, National Centre for Prosthetics and Orthotics; Kirk and Rowe are with the Department of Physical Activity for Health, School of Psychological Sciences and Health; University of Strathclyde, Glasgow, United Kingdom.

Deans (sarah@deansltd.com) is corresponding author.
  • Bland, J.M., & Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327(8476):307310. doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buis, A.W.P., Dumbleton, T., Murray, K.D., McHugh, B.F., McKay, G., & Sexton, S. (2014). Measuring the daily stepping activity of people with transtibial amputation using the activPAL activity monitor. Journal of Prosthetics and Orthotics, 26(1), 4347. doi:10.1097/JPO.0000000000000016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bussmann, H.B., Reuvekamp, P.J., Veltink, P.H., Martens, W.L., & Stam, H.J. (1998). Validity and reliability of measurements obtained with an “activity monitor” in people with and without a transtibial amputation. Physical Therapy, 78(9), 989998. PubMed ID: 9736896 doi:10.1093/ptj/78.9.989

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F.M., & Granat, M.H. (2010). Methods for objective measure, quantification and analysis of sedentary behaviour and inactivity. Gait & Posture, 31(1), 8286. PubMed ID: 19854651 doi:10.1016/j.gaitpost.2009.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences. New York, NY: Routledge Academic.

  • Dillingham, T.R., Pezzin, L.E., & Shore, A.D. (2005). Reamputation, mortality, and health care costs among persons with dysvascular lower-limb amputations. Archives of Physical Medicine and Rehabilitation, 86(3), 480486. PubMed ID: 15759232 doi:10.1016/j.apmr.2004.06.072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drenowatz, C., Gribben, N., Wirth, M.D., Hand, G.A., Shook, R.P., Burgess, S., & Blair, S.N. (2016). The association of physical activity during weekdays and weekend with body composition in young adults. Journal of Obesity, 3(2), 375 388. PubMed ID: 27200185 doi:10.1155/2016/8236439

    • Search Google Scholar
    • Export Citation
  • Healy, G.N., Clark, B.K., Winkler, E.A.H., Gardiner, P.A., Brown, W.J., & Matthews, C.E. (2011). Measurement of adults’ sedentary time in population-based studies. American Journal of Preventive Medicine, 41(2), 216227. PubMed ID: 21767730 doi:10.1016/j.amepre.2011.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M., Rowe, D.A., Barreira, T.V., Robinson, T.S., & Mahar, M.T. (2009). Individual information-centered approach for handling physical activity missing data. Research Quarterly for Exercise and Sport, 80(2), 131137. PubMed ID: 19650377 doi:10.1080/02701367.2009.10599546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koo, T.K., & Li, M.Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi, P.D., Sheffield, J., Tyo, B.M., & Fittipaldi-Wert, J. (2014). Accelerometer-determined physical activity, mobility disability, and health. Disability and Health Journal, 7(4), 419425. PubMed ID: 25224982 doi:10.1016/j.dhjo.2014.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunnally, J.C. (1994). Psychometric theory (3rd ed.). New York, NY: McGraw-Hill.

  • Owen, N., Sugiyama, T., Eakin, E.E., Gardiner, P.A., Tremblay, M.S., & Sallis, J.F. (2011). Adults’ sedentary behavior: Determinants and interventions. American Journal of Preventive Medicine, 41(2), 189196. PubMed ID: 21767727 doi:10.1016/j.amepre.2011.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piazza, L., Ferreira, E.G., Minsky, R.C., Pires, G.K.W., & Silva, R. (2017). Assesment of physical activity in amputees: A systematic review of the literature. Science & Sports, 32(4), 191202. doi:10.1016/j.scispo.2017.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redfield, M.T., Cagle, J.C., Hafner, B.J., & Sanders, J.E. (2013). Classifying prosthetic use via accelerometry in persons with transtibial amputations. Journal of Rehabilitation Research and Development, 50(9), 12011212. PubMed ID: 24458961 doi:10.1682/JRRD.2012.12.0233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, D., & Mahar, M. (2006). Construct validity. In T. Wood & W. Zhu (Eds.), Measurement theory and practice in kinesiology (pp. 926). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Ryan, C.G., Grant, P.M., Tigbe, W.W., & Granat, M.H. (2006). The validity and reliability of a novel activity monitor as a measure of walking. British Journal of Sports Medicine, 40(9), 779784. PubMed ID: 16825270 doi:10.1136/bjsm.2006.027276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salih, S.A., Peel, N.M., & Burgess, K. (2016). Monitoring activity of inpatient lower limb prosthetic users in rehabilitation using accelerometry: Validation study. Journal of Rehabilitation and Assistive Technologies Engineering, 3, 2055668316642387. PubMed ID: 31186902 doi:10.1177/2055668316642387

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallis, J.F. (2010). Measuring physical activity: Practical approaches for program evaluation in native American communities. Journal of Public Health Management and Practice, 16(5), 404410. PubMed ID: 20689389 doi:10.1097/PHH.0b013e3181d52804

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedentary Behaviour Research Network. (2012). Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Applied Physiology, Nutrition, and Metabolism, 37(3), 540542. doi:10.1139/h2012-024

    • Search Google Scholar
    • Export Citation
  • Sellers, C., Dall, P., Grant, M., & Stansfield, B. (2016). Validity and reliability of the activPAL3 for measuring posture and stepping in adults and young people. Gait and Posture, 43, 4247. PubMed ID: 26669950 doi:10.1016/j.gaitpost.2015.10.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrout, P.E., & Fleiss, J.L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420428. PubMed ID: 18839484 doi:10.1037/0033-2909.86.2.420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorp, A.A., Owen, N., Neuhaus, M., & Dunstan, D.W. (2011). Sedentary behaviors and subsequent health outcomes in adults: A systematic review of logitudinal studies, 1996-2011. American Journal of Preventive Medicine, 41(2), 207215. PubMed ID: 21767729 doi:10.1016/j.amepre.2011.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United National Institute for Prosthetics Orthotics Development. (2011–2012). Limbless statistics annual reports: A repository for quantitative information on the UK limbless population referred for prosthetics treatment. Retrieved from http://www.limbless-statistics.org/

    • Export Citation
  • Verbrugge, L.M., & Jette, A.M. (1994). The disablement process. Social Science and Medicine, 38(1), 114. PubMed ID: 8146699 doi:10.1016/0277-9536(94)90294-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2011). Information sheet: Global recommendations on physical activity for health 18-64 years old. Retrieved from http://www.who.int/dietphysicalactivity/publications/recommendations18_64yearsold/en/

    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 54 54 9
Full Text Views 9 9 2
PDF Downloads 3 3 0