Validating Accelerometers for the Assessment of Body Position and Sedentary Behavior

Click name to view affiliation

Marco Giurgiu Karlsruhe Institute of Technology
Heidelberg University

Search for other papers by Marco Giurgiu in
Current site
Google Scholar
PubMed
Close
*
,
Johannes B.J. Bussmann Erasmus University Medical Center

Search for other papers by Johannes B.J. Bussmann in
Current site
Google Scholar
PubMed
Close
*
,
Holger Hill Karlsruhe Institute of Technology

Search for other papers by Holger Hill in
Current site
Google Scholar
PubMed
Close
*
,
Bastian Anedda Karlsruhe Institute of Technology

Search for other papers by Bastian Anedda in
Current site
Google Scholar
PubMed
Close
*
,
Marcel Kronenwett Karlsruhe Institute of Technology

Search for other papers by Marcel Kronenwett in
Current site
Google Scholar
PubMed
Close
*
,
Elena D. Koch Karlsruhe Institute of Technology

Search for other papers by Elena D. Koch in
Current site
Google Scholar
PubMed
Close
*
,
Ulrich W. Ebner-Priemer Karlsruhe Institute of Technology

Search for other papers by Ulrich W. Ebner-Priemer in
Current site
Google Scholar
PubMed
Close
*
, and
Markus Reichert Karlsruhe Institute of Technology
Heidelberg University

Search for other papers by Markus Reichert in
Current site
Google Scholar
PubMed
Close
*
Restricted access

There is growing evidence that sedentary behavior is a risk factor for somatic and mental health. However, there is still a lack of objective field methods, which can assess both components of sedentary behavior: the postural (sitting/lying) and the movement intensity part. The purpose of the study was to compare the validity of different accelerometers (ActivPAL [thigh], ActiGraph [hip], move [hip], and move [thigh]). 20 adults (10 females; age 25.68 ± 4.55 years) participated in a structured protocol with a series of full- and semistandardized sessions under laboratory conditions. Direct observation via video recording was used as a criterion measure of body positions (sitting/lying vs. nonsitting/lying). By combining direct observation with metabolic equivalent tables, protocol activities were also categorized as sedentary or nonsedentary. Cohen’s kappa was calculated as an overall validity measure to compare accelerometer and video recordings. Across all conditions, for the measurement of sitting/lying body positions, the ActivPAL ([thigh], ĸ = .85) and Move 4 ([thigh], ĸ = .97) showed almost perfect agreement, whereas the Move 4 ([hip], ĸ = .78) and ActiGraph ([hip], ĸ = .67) showed substantial agreement. For the sedentary behavior part, across all conditions, the ActivPAL ([thigh], ĸ = .90), Move 4 ([thigh], ĸ = .95) and Move 4 ([hip], ĸ = .84) revealed almost perfect agreement, whereas the ActiGraph ([hip], ĸ = .69) showed substantial agreement. In particular, thigh-worn devices, namely the Move and the ActivPAL, achieved up to excellent validity in measuring sitting/lying body positions and sedentary behavior and are recommended for future studies.

Giurgiu, Hill, Anedda, Kronenwett, Koch, Ebner-Priemer, and Reichert are with the Institute of Sports and Sports Science, Mental mHealth Lab, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. Giurgiu and Reichert are also with the Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Bussmann is with the Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.

Giurgiu (marco.giurgiu@kit.edu) is corresponding author.

Supplementary Materials

    • Supplementary File 1 (PDF 175 KB)
    • Supplementary File 2 (PDF 175 KB)
  • Collapse
  • Expand
  • ActiGraph LLC. (n.d.). GT3X+ and wGT3X+ device manual. Retrieved from https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2018/02/22094126/GT3X-wGT3X-Device-Manual-110315.pdf

    • Search Google Scholar
    • Export Citation
  • Ainslie, P.N., Reilly, T., & Westerterp, K.R. (2003). Estimating human energy expenditure. Sports Medicine, 33(9), 683698. PubMed ID: 12846591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Tudor-Locke, C., . . . Leon, A.S. (2011). 2011 Compendium of Physical Activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 15751581. PubMed ID: 21681120 doi:10.1249/MSS.0b013e31821ece12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anastasopoulou, P., Tubic, M., Schmidt, S., Neumann, R., Woll, A., & Härtel, S. (2014). Validation and comparison of two methods to assess human energy expenditure during free-living activities. PLoS One, 9(2), e90606. PubMed ID: 24587401 doi:10.1371/journal.pone.0090606

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancoli-Israel, S., Martin, J.L., Blackwell, T., Buenaver, L., Liu, L., Meltzer, L.J., . . . Taylor, D.J. (2015). The SBSM guide to actigraphy monitoring: Clinical and research applications. Behavioral Sleep Medicine, 13(Suppl. 1), S4S38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkin, A.J., Gorely, T., Clemes, S.A., Yates, T., Edwardson, C., Brage, S., . . . Biddle, S.J.H. (2012). Methods of measurement in epidemiology: Sedentary behaviour. International Journal of Epidemiology, 41(5), 14601471. PubMed ID: 23045206 doi:10.1093/ije/dys118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, D.R. (2012). Device-based monitoring in physical activity and public health research. Physiological Measurement, 33(11), 17691783. PubMed ID: 23110847 doi:10.1088/0967-3334/33/11/1769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrom, B., Stratton, G., Mc Carthy, M., & Muehlhausen, W. (2016). Objective measurement of sedentary behaviour using accelerometers. International Journal of Obesity, 40(11), 18091812. PubMed ID: 27478922 doi:10.1038/ijo.2016.136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleland, I., Kikhia, B., Nugent, C., Boytsov, A., Hallberg, J., Synnes, K., . . . Finlay, D. (2013). Optimal placement of accelerometers for the detection of everyday activities. Sensors, 13(7), 91839200. PubMed ID: 23867744 doi:10.3390/s130709183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, K.M., Howard, V.J., Hutto, B., Colabianchi, N., Vena, J.E., Blair, S.N., & Hooker, S.P. (2016). Patterns of sedentary behavior in US middle-age and older adults: The REGARDS Study. Medicine & Science in Sports & Exercise, 48(3), 430438. PubMed ID: 26460633 doi:10.1249/MSS.0000000000000792

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson, S.C., Montoye, A.H.K., Tuttle, M.S., & Kaminsky, L.A. (2016). Variability of objectively measured sedentary behavior. Medicine & Science in Sports & Exercise, 48(4), 755761. PubMed ID: 26606270 doi:10.1249/MSS.0000000000000828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowd, K.P., Harrington, D.M., Bourke, A.K., Nelson, J., & Donnelly, A.E. (2012). The measurement of sedentary patterns and behaviors using the activPAL Professional physical activity monitor. Physiological Measurement, 33(11), 18871899. PubMed ID: 23111150 doi:10.1088/0967-3334/33/11/1887

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbs, B.B., Hergenroeder, A.L., Katzmarzyk, P.T., Lee, I.-M., & Jakicic, J.M. (2015). Definition, measurement, and health risks associated with sedentary behavior. Medicine & Science in Sports & Exercise, 47(6), 12951300. PubMed ID: 25222816 doi:10.1249/MSS.0000000000000517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, P.M., Ryan, C.G., Tigbe, W.W., & Granat, M.H. (2006). The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. British Journal of Sports Medicine, 40(12), 992997. PubMed ID: 16980531 doi:10.1136/bjsm.2006.030262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilford, J.P. (1941). The phi coefficient and chi-square as indices of item validity. Psychometrika, 1(6), 1119.

  • Hänggi, J.M., Phillips, L.R.S., & Rowlands, A.V. (2013). Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. Journal of Science and Medicine in Sport, 16(1), 4044. doi:10.1016/j.jsams.2012.05.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harms, T., Gershuny, J., Doherty, A., Thomas, E., Milton, K., & Foster, C. (2019). A validation study of the Eurostat harmonised European time use study (HETUS) diary using wearable technology. BMC Public Health, 19(Suppl. 2), 455. PubMed ID: 31159770 doi:10.1186/s12889-019-6761-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtermann, A., Schellewald, V., Mathiassen, S.E., Gupta, N., Pinder, A., Punakallio, A., . . . Ellegast, R. (2017). A practical guidance for assessments of sedentary behavior at work: A PEROSH initiative. Applied Ergonomics, 63, 4152. PubMed ID: 28502405 doi:10.1016/j.apergo.2017.03.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, X., & Cliff, D.P. (2015). Issues related to measuring and interpreting objectively measured sedentary behavior data. Measurement in Physical Education and Exercise Science, 19(3), 116124. doi:10.1080/1091367X.2015.1045908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M., & Rowe, D.A. (2015). Issues and challenges in sedentary behavior measurement. Measurement in Physical Education and Exercise Science, 19(3), 105115. doi:10.1080/1091367X.2015.1055566

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzmarzyk, P.T., Powell, K.E., Jakicic, J.M., Troiano, R.P., Piercy, K., & Tennant, B. (2019). Sedentary behavior and health: Update from the 2018 Physical Activity Guidelines Advisory Committee. Medicine & Science in Sports & Exercise, 51(6), 12271241. PubMed ID: 31095080 doi:10.1249/MSS.0000000000001935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keadle, S.K., Lyden, K.A., Strath, S.J., Staudenmayer, J.W., & Freedson, P.S. (2019). A Framework to evaluate devices that assess physical behavior. Exercise and Sport Sciences Reviews, 47(4), 206214. PubMed ID: 31524786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., Barry, V.W., & Kang, M. (2015). Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Measurement in Physical Education and Exercise Science, 19(3), 125137. doi:10.1080/1091367X.2015.1054390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., & Freedson, P.S. (2011). Validation of wearable monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise, 43(8), 15611567. PubMed ID: 21233777 doi:10.1249/MSS.0b013e31820ce174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159174. PubMed ID: 843571

  • Loveday, A., Sherar, L.B., Sanders, J.P., Sanderson, P.W., & Esliger, D.W. (2015). Technologies that assess the location of physical activity and sedentary behavior: A systematic review. Journal of Medical Internet Research, 17(8), e192. PubMed ID: 26245157 doi:10.2196/jmir.4761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Chen, K.Y., Freedson, P.S., Buchowski, M.S., Beech, B.M., Pate, R.R., & Troiano, R.P. (2008). Amount of time spent in sedentary behaviors in the United States, 2003–2004. American Journal of Epidemiology, 167(7), 875881. PubMed ID: 18303006 doi:10.1093/aje/kwm390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, D.E., Palarea-Albaladejo, J., Dall, P.M., del Pozo Cruz, B., & Chastin, S.F. (2019). Compositional analysis of the association between mortality and 24-hour movement behaviour from NHANES. European Journal of Preventive Cardiology. Advance online publication. doi:10.1177/2047487319867783

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • McMahon, G.C., Brychta, R.J., & Chen, K.Y. (2010). Validation of the Actigraph (GT3X) inclinometer function. Medicine & Science in Sports & Exercise, 42(5), 489. doi:10.1249/01.MSS.0000385098.02949.38

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., . . . Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Pivarnik, J.M., Mudd, L.M., Biswas, S., & Pfeiffer, A.K. (2016). Validation and comparison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior. AIMS Public Health, 3(2), 298312. PubMed ID: 29546164 doi:10.3934/publichealth.2016.2.298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Movisens GmbH. (2018). Move 4. Retrieved from https://www.movisens.com/wp-content/downloads/Move4_User_Manual.pdf

  • Nooijen, C.F., de Groot, J.F., Stam, H.J., van den Berg-Emons, R.J., & Bussmann, H.B. (2015). Validation of an activity monitor for children who are partly or completely wheelchair-dependent. Journal of Neuroengineering and Rehabilitation, 12(1), 11. doi:10.1186/s12984-015-0004-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, N.E., Sirard, J.R., Kulbok, P.A., DeBoer, M.D., & Erickson, J.M. (2015). Validation of accelerometer thresholds and inclinometry for measurement of sedentary behavior in young adult university students. Research in Nursing & Health, 38(6), 492499. PubMed ID: 26444969 doi:10.1002/nur.21694

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, F.M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 3763.

    • Search Google Scholar
    • Export Citation
  • Quante, M., Kaplan, E.R., Rueschman, M., Cailler, M., Buxton, O.M., & Redline, S. (2015). Practical considerations in using accelerometers to assess physical activity, sedentary behavior, and sleep. Sleep Health, 1(4), 275284. PubMed ID: 29073403 doi:10.1016/j.sleh.2015.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberger, M. (2012). Sedentary behavior: Target for change, challenge to assess. International Journal of Obesity, 2(Suppl. 1), S26S29. doi:10.1038/ijosup.2012.7

    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Fulton, J.E., Buman, M.P., Troiano, R.P., Grandner, M.A., Buchner, D.M., & Haskell, W.L. (2019). The 24-hour activity cycle: A new paradigm for physical activity. Medicine & Science in Sports & Exercise, 51(3), 454464. PubMed ID: 30339658 doi:10.1249/MSS.0000000000001811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sievanen, H., & Kujala, U.M. (2017). Accelerometry—Simple, but challenging. Scandinavian Journal of Medicine & Science in Sports, 27(6), 574578. PubMed ID: 28466474 doi:10.1111/sms.12887

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamatakis, E., Koster, A., Hamer, M., Rangul, V., Lee, I.-M., Bauman, A.E., . . . Holtermann, A. (2020). Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines: The Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). British Journal of Sports Medicine, 54(8), 435437. PubMed ID: 31076396 doi:10.1136/bjsports-2019-100786

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strath, S.J., Kaminsky, L.A., Ainsworth, B.E., Ekelund, U., Freedson, P.S., Gary, R.A., . . . Swartz, A.M. (2013). Guide to the assessment of physical activity: Clinical and research applications: A scientific statement from the American Heart Association. Circulation, 128(20), 22592279. PubMed ID: 24126387 doi:10.1161/01.cir.0000435708.67487.da

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toon, E., Davey, M.J., Hollis, S.L., Nixon, G.M., Horne, R.S.C., & Biggs, S.N. (2016). Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and psg in a clinical cohort of children and adolescents. Journal of Clinical Sleep Medicine, 12(3), 343350. PubMed ID: 26446248 doi:10.5664/jcsm.5580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A.E., . . . Chinapaw, M.J.M. (2017). Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. The International Journal of Behavioral Nutrition and Physical Activity, 14(1), 75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vancampfort, D., Stubbs, B., Mugisha, J., Firth, J., Schuch, F.B., & Koyanagi, A. (2018). Correlates of sedentary behavior in 2,375 people with depression from 6 low- and middle-income countries. Journal of Affective Disorders, 234, 97104. PubMed ID: 29524752 doi:10.1016/j.jad.2018.02.088

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5997 1322 173
Full Text Views 131 57 0
PDF Downloads 70 13 0