Where to Place Which Sensor to Measure Sedentary Behavior? A Method Development and Comparison Among Various Sensor Placements and Signal Types

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Karolinska Institutet
  • 2 ZHAW Zurich University of Applied Sciences
  • 3 Karolinska University Hospital
  • 4 Sophiahemmet University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Background: Sedentary behavior (SB) is associated with several chronic diseases and office workers especially are at increased risk. SB is defined by a sitting or reclined body posture with an energy expenditure of ≤1.5 metabolic equivalents. However, current objective methods to measure SB are not consistent with its definition. There is no consensus on which sensor placement and type should be used. Aim: To compare the accuracy of newly developed artificial intelligence models for 15 sensor placements in combination with four signal types (accelerometer only/plus gyroscope and/or magnetometer) to detect posture and physical in-/activity during desk-based activities. Method: Signal features for the model development were extracted from sensor raw data of 30 office workers performing 10 desk-based tasks, each lasting 5 min. Direct observation (posture) and indirect calorimetry (in-/activity) served as the reference criteria. The best classification model for each sensor was identified and compared among the sensor placements, both using Friedman and post hoc Wilcoxon tests (p ≤ .05). Results: Posture was most accurately measured with a lower body sensor, while in-/activity was most accurately measured with an upper body or waist sensor. The inclusion of additional signal types improved the posture classification for some placements, while the acceleration signal already contained the relevant signal information for the in-/activity classification. Overall, the thigh accelerometer most accurately classified desk-based SB. Conclusion: This study favors, in line with previous work, the measurement of SB with a thigh-worn accelerometer and adds the information that this sensor is also accurate in measuring physical in-/activity while sitting and standing.

Kuster, Hagströmer, and Grooten are with the Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. Kuster and Baumgartner are with the Institute of Mechanical Systems, School of Engineering, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland. Hagströmer and Grooten are also with Function Area Occupational Therapy and Physiotherapy, Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden. Hagströmer is also with the Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden.

Kuster (roman.kuster@alumni.ethz.ch) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 463 KB)
    • Supplementary Material 2 (PDF 351 KB)
    • Supplementary Material 3 (PDF 74 KB)
    • Supplementary Material 4 (PDF 158 KB)
    • Supplementary Material 5 (PDF 78 KB)
  • Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Jr., Tudor-Locke, C., … Leon, A.S. (2011). 2011 Compendium of Physical Activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 15751581. PubMed ID: 21681120 doi:10.1249/MSS.0b013e31821ece12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amirfaiz, S., & Shahril, M.R. (2019). Objectively measured physical activity, sedentary behavior, and metabolic syndrome in adults: Systematic review of observational evidence. Metabolic Syndrome and Related Disorders, 17(1), 121. PubMed ID: 30272527 doi:10.1089/met.2018.0032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borges, J.H., Langer, R.D., Cirolini, V.X., Pascoa, M.A., Guerra-Junior, G., & Goncalves, E.M. (2016). Minimum time to achieve the steady state and optimum abbreviated period to estimate the resting energy expenditure by indirect calorimetry in healthy young adults. Nutrition in Clinical Practice, 31(3), 349354. PubMed ID: 26888859 doi: doi:10.1177/0884533615627268

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, J.P., Hedge, A., Yates, T., Copeland, R.J., Loosemore, M., Hamer, M., … Dunstan, D.W. (2015). The sedentary office: An expert statement on the growing case for change towards better health and productivity. British Journal of Sports Medicine, 49(21), 13571362. PubMed ID: 26034192 doi:10.1136/bjsports-2015-094618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, J., Forde, C., & Dockrell, S. (2017). Energy Expenditure of Standing Compared to Sitting While Conducting Office Tasks. Human Factors, 59(7), 10781087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., LaMunion, S.R., Hibbingi, P.R., Kaplan, A.S., Quarantillo, M.E., & Bassett, D.R. (2019). Accuracy of the Cosmed K5 Portable Metabolic System. Medicine & Science in Sports & Exercise, 51(65), 147 doi: doi:10.1249/01.mss.0000560944.43209.a5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Rowlands, A.V., Bunnewell, S., Sanders, J., Esliger, D.W., Gorely, T., … Yates, T. (2016). Accuracy of posture allocation algorithms for thigh- and waist-worn accelerometers. Medicine & Science in Sports & Exercise, 48(6), 10851090. PubMed ID: 26741122 doi:10.1249/MSS.0000000000000865

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Winkler, E.A.H., Bodicoat, D.H., Yates, T., Davies, M.J., Dunstan, D.W., & Healy, G.N. (2017). Considerations when using the activPAL monitor in field-based research with adult populations. Journal of Sport and Health Science, 6(2), 162178. PubMed ID: 30356601 doi:10.1016/j.jshs.2016.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellegast, R.P., Kraft, K., Groenesteijn, L., Krause, F., Berger, H., & Vink, P. (2012). Comparison of four specific dynamic office chairs with a conventional office chair: Impact upon muscle activation. Applied Ergonomics, 43(2), 296307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, L.D., Schwabacher, I.J., Kim, Y., Welk, G.J., & Cook, D.B. (2016). Validity of an integrative method for processing physical activity data. Medicine & Science in Sports & Exercise, 48(8), 16291638. PubMed ID: 27015380 doi:10.1249/MSS.0000000000000915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G. (2016). Hip and wrist accelerometer algorithms for free-living behavior classification. Medicine & Science in Sports & Exercise, 48(5), 933940. PubMed ID: 26673126 doi:10.1249/MSS.0000000000000840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fanchamps, M.H.J., van den Berg-Emons, H.J.G., Stam, H.J., & Bussmann, J.B.J. (2017). Sedentary behavior: Different types of operationalization influence outcome measures. Gait & Posture, 54, 188193. PubMed ID: 28324755 doi:10.1016/j.gaitpost.2017.02.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, A., Culhane, K.M., & Lyons, G.M. (2007). Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor. Medical Engineering and Physics, 29(8), 930934. PubMed ID: 17134934 doi:10.1016/j.medengphy.2006.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, P.M., Ryan, C.G., Tigbe, W.W., & Granat, M.H. (2006). The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. British Journal of Sports Medicine, 40(12), 992997. PubMed ID: 16980531 doi:10.1136/bjsm.2006.030262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grooten, W.J.A., Conradsson, D., Ang, B.O., & Franzen, E. (2013). Is active sitting as active as we think? Ergonomics, 56(8), 13041314.

  • Gyllensten, I.C., & Bonomi, A.G. (2011). Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life. IEEE Transactions on Biomedical Engineering, 58(9), 26562663. PubMed ID: 21712150 doi:10.1109/TBME.2011.2160723

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtermann, A., Schellewald, V., Mathiassen, S.E., Gupta, N., Pinder, A., Punakallio, A., … Ellegast, R. (2017). A practical guidance for assessments of sedentary behavior at work: A PEROSH initiative. Applied Ergonomics, 63, 4152. PubMed ID: 28502405 doi:10.1016/j.apergo.2017.03.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutcheson, A.K., Piazza, A.J., & Knowlden, A.P. (2018). Work site-based environmental interventions to reduce sedentary behavior: A systematic review. American Journal of Health Promotion, 32(1), 3247. PubMed ID: 27780893 doi:10.1177/0890117116674681

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M., & Rowe, D.A. (2015). Issues and challenges in sedentary behavior measurement. Measurement in Physical Education and Exercise Science, 19(3), 105115. doi:10.1080/1091367X.2015.1055566

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keadle, S.K., Lyden, K.A., Strath, S.J., Staudenmayer, J.W., & Freedson, P.S. (2019). A framework to evaluate devices that assess physical behavior. Exercise and Sport Sciences Reviews, 47(4), 206214. PubMed ID: 31524786 doi:10.1249/JES.0000000000000206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keown, M.K., Skeaff, C.M., Perry, T.L., Haszard, J.J., & Peddie, M.C. (2018). Device-measured sedentary behavior patterns in office-based university employees. Journal of Occupational and Environmental Medicine, 60(12), 11501157. PubMed ID: 30308622 doi:10.1097/JOM.0000000000001467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, J., Marinac, C.R., Ellis, K., Godbole, S., Hipp, A., Glanz, K., … Berrigan, D. (2017). Comparison of accelerometry methods for estimating physical activity. Medicine & Science in Sports & Exercise, 49(3), 617624. PubMed ID: 27755355 doi:10.1249/MSS.0000000000001124

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, J., Patterson, R.E., Ellis, K., Godbole, S., Johnson, E., Lanckriet, G., & Staudenmayer, J. (2016). Objective assessment of physical activity: Classifiers for public health. Medicine & Science in Sports & Exercise, 48(5), 951957. PubMed ID: 27089222 doi:10.1249/MSS.0000000000000841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., Lee, J., Park, H.K., Jang, D.P., Song, S., Cho, B.H., … Kim, I.Y. (2017). Comparing the standards of one metabolic equivalent of task in accurately estimating physical activity energy expenditure based on acceleration. Journal of Sports Sciences, 35(13), 12791286. PubMed ID: 27556835 doi:10.1080/02640414.2016.1221520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., Barry, V.W., & Kang, M. (2015). Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Measurement in Physical Education and Exercise Science, 19(3), 125137. doi:10.1080/1091367X.2015.1054390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozey, S., Lyden, K., Staudenmayer, J., & Freedson, P. (2010). Errors in MET estimates of physical activities using 3.5 ml × kg−1 × min−1 as the baseline oxygen consumption. Journal of Physical Activity and Health, 7(4), 508516. PubMed ID: 20683093 doi:10.1123/jpah.7.4.508

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., & Freedson, P.S. (2011). Validation of wearable monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise, 43(8), 15611567. PubMed ID: 21233777 doi:10.1249/MSS.0b013e31820ce174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, R.P., Grooten, W.J.A., Baumgartner, D., Blom, V., Hagstromer, M., & Ekblom, O. (2020). Detecting prolonged sitting bouts with the ActiGraph GT3X. Scandinavian Journal of Medicine & Science in Sports, 30(3), 572582. PubMed ID: 31743494 doi:10.1111/sms.13601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, R.P., Huber, M., Hirschi, S., Siegl, W., Baumgartner, D., Hagströmer, M., & Grooten, W. (2018). Measuring sedentary behavior by means of muscular activity and accelerometry. Sensors, 18(11). doi:10.3390/s18114010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loyen, A., Clarke-Cornwell, A.M., Anderssen, S.A., Hagstromer, M., Sardinha, L.B., Sundquist, K., … van der Ploeg, H.P. (2017). Sedentary time and physical activity surveillance through accelerometer pooling in four European countries. Sports Medicine, 47(7), 14211435. PubMed ID: 27943147 doi:10.1007/s40279-016-0658-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Keadle, S.K., Staudenmayer, J., & Freedson, P.S. (2014). A method to estimate free-living active and sedentary behavior from an accelerometer. Medicine & Science in Sports & Exercise, 46(2), 386397. PubMed ID: 23860415 doi:10.1249/MSS.0b013e3182a42a2d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Hagstromer, M., Pober, D.M., & Bowles, H.R. (2012). Best practices for using physical activity monitors in population-based research. Medicine & Science in Sports & Exercise, 44(1, Suppl. 1), S68S76. doi:10.1249/MSS.0b013e3182399e5b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Kozey-Keadle, S., Moore, S.C., Schoeller, D.S., Carroll, R.J., Troiano, R.P., & Sampson, J.N. (2018). Measurement of active and sedentary behavior in context of large epidemiologic studies. Medicine & Science in Sports & Exercise, 50(2), 266276. PubMed ID: 28930863 doi:10.1249/MSS.0000000000001428

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-Gonzalez, J., Lof, M., … Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Pivarnik, J.M., Mudd, L.M., Biswas, S., & Pfeiffer, K.A. (2016). Validation and comparison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior. AIMS Public Health, 3(2), 298312. PubMed ID: 29546164 doi:10.3934/publichealth.2016.2.298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Westgate, B.S., Fonley, M.R., & Pfeiffer, K.A. (2018). Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. J Appl Physiol, 124(5), 12841293. doi:10.1152/japplphysiol.00760.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neuhaus, M., Eakin, E.G., Straker, L., Owen, N., Dunstan, D.W., Reid, N., & Healy, G.N. (2014). Reducing occupational sedentary time: A systematic review and meta-analysis of evidence on activity-permissive workstations. Obesity Reviews, 15(10), 822838. PubMed ID: 25040784 doi:10.1111/obr.12201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nooijen, C., Kallings, L., Blom, V., Ekblom, O., Forsell, Y., & Ekblom, M. (2018). Common perceived barriers and facilitators for reducing sedentary behaviour among office workers. Journal of Physical Activity and Health, 15(10), S94S95. doi:10.3390/ijerph15040792

    • Search Google Scholar
    • Export Citation
  • Plasschaert, F., Jones, K., & Forward, M. (2009). Energy cost of walking: Solving the paradox of steady state in the presence of variable walking speed. Gait & Posture, 29(2), 311316. PubMed ID: 19027301 doi:10.1016/j.gaitpost.2008.09.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popp, C.J., Tisch, J.J., Sakarcan, K.E., Bridges, W.C., & Jesch, E.D. (2016). Approximate time to steady-state resting energy expenditure using indirect calorimetry in young, healthy adults. Frontiers in Nutrition, 3, 49. PubMed ID: 27857943 doi:10.3389/fnut.2016.00049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Haskell, W.L., Albinali, F., Mota, S., Nawyn, J., & Intille, S. (2013). Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Medicine & Science in Sports & Exercise, 45(5), 964975. PubMed ID: 23247702 doi:10.1249/MSS.0b013e31827f0d9c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothney, M.P., Schaefer, E.V., Neumann, M.M., Choi, L., & Chen, K.Y. (2008). Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity, 16(8), 19461952. PubMed ID: 18535553 doi:10.1038/oby.2008.279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M.H. (2007). Protocol changes can improve the reliability of net oxygen cost data. Gait & Posture, 26(4), 494500. PubMed ID: 17855095 doi:10.1016/j.gaitpost.2007.07.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedentary Behaviour Research Network. (2012). Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Applied Physiology, Nutrition, and Metabolism, 37(3), 540542. doi:10.1139/h2012-024

    • Search Google Scholar
    • Export Citation
  • Shrestha, N., Kukkonen-Harjula, K.T., Verbeek, J.H., Ijaz, S., Hermans, V., & Pedisic, Z. (2018). Workplace interventions for reducing sitting at work. Cochrane Database of Systematic Reviews, (6), CD010912. doi:10.1002/14651858.CD010912.pub4

    • Search Google Scholar
    • Export Citation
  • Skotte, J., Korshoj, M., Kristiansen, J., Hanisch, C., & Holtermann, A. (2014). Detection of physical activity types using triaxial accelerometers. Journal of Physical Activity and Health, 11(1), 7684. PubMed ID: 23249722 doi:10.1123/jpah.2011-0347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamatakis, E., Ekelund, U., Ding, D., Hamer, M., Bauman, A.E., & Lee, I.M. (2019). Is the time right for quantitative public health guidelines on sitting? A narrative review of sedentary behaviour research paradigms and findings. British Journal of Sports Medicine, 53(6), 377382. PubMed ID: 29891615 doi:10.1136/bjsports-2018-099131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staudenmayer, J., He, S., Hickey, A., Sasaki, J., & Freedson, P. (2015). Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements. Journal of Applied Physiology (Bethesda, Md.: 1985), 119(4), 396403. doi:10.1152/japplphysiol.00026.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stemland, I., Ingebrigtsen, J., Christiansen, C.S., Jensen, B.R., Hanisch, C., Skotte, J., & Holtermann, A. (2015). Validity of the Acti4 method for detection of physical activity types in free-living settings: Comparison with video analysis. Ergonomics, 58(6), 953965. PubMed ID: 25588819 doi:10.1080/00140139.2014.998724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, A., McDonough, S.M., Murphy, M.H., Nugent, C.D., & Mair, J.L. (2017). Using computer, mobile and wearable technology enhanced interventions to reduce sedentary behaviour: A systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 17. doi:10.1186/s12966-017-0561-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tew, G.A., Posso, M.C., Arundel, C.E., & McDaid, C.M. (2015). Systematic review: Height-adjustable workstations to reduce sedentary behaviour in office-based workers. Occupational Medicine (Oxford, England), 65(5), 357366. doi:10.1093/occmed/kqv044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A.E., … Participants, S.T.C.P. (2017). Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Velde, J., Schaper, N.C., Stehouwer, C.D.A., van der Kallen, C.J.H., Sep, S.J.S., Schram, M.T., … Koster, A. (2018). Which is more important for cardiometabolic health: Sedentary time, higher intensity physical activity or cardiorespiratory fitness? The Maastricht Study. Diabetologia, 61(12), 25612569. doi:10.1007/s00125-018-4719-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Uffelen, J.G.Z., Wong, J., Chau, J.Y., van der Ploeg, H.P., Riphagen, I., Gilson, N.D., … Brown, W.J. (2010). Occupational sitting and health risks: A systematic review. American Journal of Preventive Medicine, 39(4), 379388. doi:10.1016/j.amepre.2010.05.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., Murray, P., Zillmer, R., Eston, R.G., Catt, M., & Rowlands, A.V. (2012). Activity classification using the GENEA: Optimum sampling frequency and number of axes. Medicine & Science in Sports & Exercise, 44(11), 22282234. PubMed ID: 22617400 doi:10.1249/MSS.0b013e31825e19fd

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 361 361 137
Full Text Views 29 29 14
PDF Downloads 14 14 9