Comparison of Energy Expenditure and Step Count Measured by ActiGraph Accelerometers Among Dominant and Nondominant Wrist and Hip Sites

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Objective: To validate and compare the accuracy of energy expenditure (EE) and step counts measured by ActiGraph accelerometers (ACT) at dominant and nondominant wrist and hip sites. Methods: Thirty young adults (15 females, age 22.93 ± 3.30 years) wore four ActiGraph wGT3X accelerometers while walking and running on a treadmill for 7 min at seven different speeds (1.7, 2.5, 3.4, 4.2, 5.0, 5.5, and 6.0 mph). The EE from each ACT was calculated using the Freedson Adult equation, and the “worn on the wrist” option was selected for the wrist data. Indirect calorimetry and manually counted steps were used as criterion measures. Mean absolute percentage error and two one-sided test procedures for equivalence were used for the analyses. Results: All ACTs underestimated the EE with mean absolute percentage errors over 30% for wrist placement and over 20% for hip placement. The wrist-worn ACTs underestimated the step count with mean absolute percentage errors above 30% for both dominant and nondominant placements. The hip-worn ACTs accurately assessed steps for the whole sample and for women and men (p < .001 to .05 for two one-sided tests procedures), but not at speeds slower than 2.0 mph. Conclusion: Neither hip nor wrist placements assess EE accurately. More algorithms and methods to derive EE estimates from wrist-worn ACTs must be developed and validated. For step counts, both dominant and nondominant hip placements, but not wrist placements, lead to accurate results for both men and women.

The authors are with the Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.

Nuss (kayla.nuss@colostate.edu) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 33 KB)
    • Supplementary Table S2 (PDF 336 KB)
  • ActiGraph. (2019). User Guide ActiGraph wGT3X-BT + ActiLife ActiGraph wGT3X-BT + ActiLife. Retrieved from https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2019/02/04090339/ActiGraph_wGT3X-BT_UserGuide_02012019_Revision2_FINAL.pdf

    • Export Citation
  • Bland, J.M., & Altman, D.G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8(2), 135160. PubMed ID: 10501650 doi:10.1177/096228029900800204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchan, D.S., McSeveney, F., & McLellan, G. (2019). A comparison of physical activity from Actigraph GT3X+ accelerometers worn on the dominant and non-dominant wrist. Clinical Physiology and Functional Imaging, 39(1), 5156. PubMed ID: 30058765 doi:10.1111/cpf.12538

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chomistek, A.K., Yuan, C., Matthews, C.E., Troiano, R.P., Bowles, H.R., Rood, J., … Bassett, D.R., Jr. (2017). Physical activity assessment with the ActiGraph GT3X and doubly labeled water. Medicine & Science in Sports & Exercise, 49(9), 19351944. PubMed ID: 28419028 doi:10.1249/MSS.0000000000001299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, J.J., Thom, J.M., Wewege, M.A., Ward, R.E., & Parmenter, B.J. (2017). Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait & posture, 57, 199203. PubMed ID: 28666177 doi:10.1016/j.gaitpost.2017.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compagnat, M., Mandigout, S., Chaparro, D., Daviet, J.C., & Salle, J.Y. (2018). Validity of the Actigraph GT3X and influence of the sensor positioning for the assessment of active energy expenditure during four activities of daily living in stroke subjects. Clinical Rehabilitation, 32(12), 16961704. PubMed ID: 30012036 doi:10.1177/0269215518788116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, I., & Lambert, E.V. (2009). Monitor placement, sources of variance and reliability of free-living physical activity: A pilot investigation. South African Journal of Sports Medicine, 21(1), 1318. doi:10.17159/2078-516X/2009/v21i1a302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dannecker, K.L., Sazonova, N.A., Melanson, E.L., Sazonov, E.S., & Browning, R.C. (2013). A comparison of energy expenditure estimation of several physical activity monitors. Medicine & Science in Sports & Exercise, 45(11), 21052112. PubMed ID: 23669877 doi:10.1249/MSS.0b013e318299d2eb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieu, O., Mikulovic, J., Fardy, P.S., Bui-Xuan, G., Béghin, L., & Vanhelst, J. (2017). Physical activity using wrist-worn accelerometers: Comparison of dominant and non-dominant wrist. Clinical Physiology and Functional Imaging, 37(5), 525529. PubMed ID: 26749436 doi:10.1111/cpf.12337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, L.D., Hibbing, P.R., Kim, Y., Frey-Law, L.A., Saint-Maurice, P.F., & Welk, G.J. (2017). Lab-based validation of different data processing methods for wrist-worn ActiGraph accelerometers in young adults. Physiological Measurement, 38(6), 1045. PubMed ID: 28481750 doi:10.1088/1361-6579/aa6d00

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y., Wong, C.K., Janeja, V., Kuber, R., & Mentis, H.M. (2017). Comparison of tri-axial accelerometers step-count accuracy in slow walking conditions. Gait & Posture, 53, 1116. PubMed ID: 28064084 doi:10.1016/j.gaitpost.2016.12.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, J.A., & Benedict, F.G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences of the United States of America, 4(12), 370373. PubMed ID: 16576330 doi:10.1073/pnas.4.12.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibbing, R.P., Lamunion, R.S., Kaplan, S.A., & Crouter, E.S. (2018). Estimating energy expenditure with Actigraph GT9X inertial measurement unit. Medicine & Science in Sports & Exercise, 50(5), 10931102. PubMed ID: 29271847 doi:10.1249/MSS.0000000000001532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, M., Van, V.T.H., Hansen, B.H., & Ekelund, U.L.F. (2014). Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Medicine & Science in Sports & Exercise, 46(9), 18161824. PubMed ID: 24887173 doi:10.1249/MSS.0000000000000289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-S., Chang, C.-H., Lin, K.-C., Huang, C.-C., & Hsu, Y.-J. (2019). Correction of estimation bias of predictive equations of energy expenditure based on wrist/waist-mounted accelerometers. PeerJ, 7, e7973. PubMed ID: 31720110 doi:10.7717/peerj.7973

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M., Turek, J., Dornfeld, C., Drews, J., & Hansen, N. (2016). Energy expenditure and step count accuracy of the actigraph wGT3X-BT during walking and running. Medicine & Science in Sports & Exercise, 48, 328. doi:10.1249/01.mss.0000485990.79517.0e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korpan, S.M., Schafer, J.L., Wilson, K.C.S., & Webber, S.C. (2015). Effect of ActiGraph GT3X+ position and algorithm choice on step count accuracy in older adults. Journal of Aging and Physical Activity, 23(3), 377382. PubMed ID: 25102469 doi:10.1123/japa.2014-0033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahar, T., Rowe, D., & Mahar, M. (2013). Comparison of ActiGraph hip worn and wrist worn activity monitors for assessment of physical activity. Medicine & Science in Sports & Exercise, 45, 322.

    • Search Google Scholar
    • Export Citation
  • McBride, G.B. (2005). A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. (NIWA Client Report: HAM2005-062). Hamilton, New Zeeland: National Institute of Water & Atmospheric Research.

    • Search Google Scholar
    • Export Citation
  • McMinn, D., Acharya, R., Rowe, D.A., Gray, S.R., & Allan, J.L. (2013). Measuring activity energy expenditure: Accuracy of the GT3X+ and actiheart monitors. International Journal of Exercise Science, 6(3), 5.

    • Search Google Scholar
    • Export Citation
  • Migueles, H.J., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-Gonzalez, J., Lof, M., … Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, H.J., Delisle Nyström, B.C., Henriksson, B.P., Cadenas-Sanchez, B.C., Ortega, B.F., & Löf, B.M. (2019). Accelerometer data processing and energy expenditure estimation in preschoolers. Medicine & Science in Sports & Exercise, 51(3), 590598. PubMed ID: 30303935 doi:10.1249/MSS.0000000000001797

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Conger, S.A., Connolly, C.P., Imboden, M.T., Nelson, M.B., Bock, J.M., & Kaminsky, L.A. (2017). Validation of accelerometer-based energy expenditure prediction models in structured and simulated free-living settings. Measurement in Physical Education and Exercise Science, 21(4), 223234. doi:10.1080/1091367X.2017.1337638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, C.E., Wessel, P.A., Tinius, R.A., Schafer, M.A., & Maples, J.M. (2019). Validity of activity trackers in estimating energy expenditure during high-intensity functional training. Research Quarterly for Exercise and Sport, 90(3), 377384. PubMed ID: 31046630 doi:10.1080/02701367.2019.1603989

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, M.H., Chimenti, R., Merkle, S., & Frey-Law, L.A. (2020). Accelerometry analysis options produce large differences in lifestyle physical activity measurement. Physiological Measurement, 41(6), 065006. PubMed ID: 32434175 doi:10.1088/1361-6579/ab94d4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riel, H., Rathleff, C.R., Kalstrup, P.M., Madsen, N.K., Pedersen, E.S., Pape-Haugaard, L.B., & Villumsen, M. (2016). Comparison between Mother, ActiGraph wGT3X-BT, and a hand tally for measuring steps at various walking speeds under controlled conditions. PeerJ, 4, e2799. PubMed ID: 28028469 doi:10.7717/peerj.2799

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, J.E., John, D., & Freedson, P.S. (2011). Validation and comparison of ActiGraph activity monitors. Journal of Science and Medicine in Sport, 14(5), 411416. PubMed ID: 21616714 doi:10.1016/j.jsams.2011.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharoun, S.M., & Bryden, P.J. (2014). Hand preference, performance abilities, and hand selection in children. Frontiers in Psychology, 5, 82. PubMed ID: 24600414 doi:10.3389/fpsyg.2014.00082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneller, M., Pedersen, M., Gupta, N., Aadahl, M., Holtermann, A., Schneller, M.B., … Holtermann, A. (2015). Validation of five minimally obstructive methods to estimate physical activity energy expenditure in young adults in semi-standardized settings. Sensors, 15(3), 61336151. PubMed ID: 25781506 doi:10.3390/s150306133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staudenmayer, J., He, S., Hickey, A., Sasaki, J., & Freedson, P. (2015). Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements. Journal of Applied Physiology, 119(4), 396403. PubMed ID: 26112238 doi:10.1152/japplphysiol.00026.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thigpen, C., & Handy, S. (2018). Driver’s licensing delay: A retrospective case study of the impact of attitudes, parental and social influences, and intergenerational differences. Transportation Research Part A: Policy and Practice, 111, 2440. doi:10.1016/j.tra.2018.03.002

    • Search Google Scholar
    • Export Citation
  • Thompson, C.B., & Panacek, E.A. (2007). Measurement issues. Air Medical Journal, 26(3), 126129. PubMed ID: 17467565 doi:10.1016/j.amj.2007.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., McClain, J.J., Brychta, R.J., & Chen, K.Y. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48(13), 1019. PubMed ID: 24782483 doi:10.1136/bjsports-2014-093546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Barreira, T.V., & Schuna, J.M.J. (2015). Comparison of step outputs for waist and wrist accelerometer attachment sites. Medicine & Science in Sports & Exercise, 47(4), 839842. PubMed ID: 25121517 doi:10.1249/MSS.0000000000000476

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 177 177 142
Full Text Views 4 4 3
PDF Downloads 3 3 3