Accuracy of Wearable Trackers for Measuring Moderate- to Vigorous-Intensity Physical Activity: A Systematic Review and Meta-Analysis

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 University of Wisconsin–Madison
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Background: The evidence base regarding validity of wearable fitness trackers for assessment and/or modification of physical activity behavior is evolving. Accurate assessment of moderate- to vigorous-intensity physical activity (MVPA) is important for measuring adherence to physical activity guidelines in the United States and abroad. Therefore, this systematic review synthesizes the state of the validation literature regarding wearable trackers and MVPA. Methods: A systematic search of the PubMed, Scopus, SPORTDiscus, and Cochrane Library databases was conducted through October 2019 (PROSPERO registration number: CRD42018103808). Studies were eligible if they reported on the validity of MVPA and used devices from Fitbit, Apple, or Garmin released in 2012 or later or available on the market at the time of review. A meta-analysis was conducted on the correlation measures comparing wearables with the ActiGraph. Results: Twenty-two studies met the inclusion criteria; all used a Fitbit device; one included a Garmin model and no Apple-device studies were found. Moderate to high correlations (.7–.9) were found between MVPA from the wearable tracker versus criterion measure (ActiGraph n = 14). Considerable heterogeneity was seen with respect to the specific definition of MVPA for the criterion device, the statistical techniques used to assess validity, and the correlations between wearable trackers and ActiGraph across studies. Conclusions: There is a need for standardization of validation methods and reporting outcomes in individual studies to allow for comparability across the evidence base. Despite the different methods utilized within studies, nearly all concluded that wearable trackers are valid for measuring MVPA.

Gorzelitz, Farber, and Cadmus-Bertram are with the Department of Kinesiology, University of Wisconsin–Madison, Madison, WI, USA. Gangnon is with the Department of Population Health Sciences; Department of Biostatistics and Medical Informatics; and Department of Statistics, University of Wisconsin–Madison, Madison, WI, USA.

Cadmus-Bertram (lisa.bertram@wisc.edu) is corresponding author.
  • Adam Noah, J., Spierer, D.K., Gu, J., & Bronner, S. (2013). Comparison of steps and energy expenditure assessment in adults of Fitbit Tracker and Ultra to the Actical and indirect calorimetry. Journal of Medical Engineering & Technology, 37(7), 456462. PubMed ID: 24007317 doi:10.3109/03091902.2013.831135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alharbi, M., Bauman, A., Neubeck, L., & Gallagher, R. (2016). Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. European Journal of Preventive Cardiology, 23(14), 14761485. PubMed ID: 26907794 doi:10.1177/2047487316634883

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, H.-S., Jones, G.C., Kang, S.-K., Welk, G.J., & Lee, J.-M. (2017). How valid are wearable physical activity trackers for measuring steps? European Journal of Sport Science, 17(3), 360368. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=121039493&site=ehost-live&scope=site

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Block, V.J., Lizee, A., Crabtree-Hartman, E., Bevan, C.J., Graves, J.S., Bove, R., … Gelfand, J.M. (2017). Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. Journal of Neurology, 264(2), 316326. PubMed ID: 27896433 doi:10.1007/s00415-016-8334-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, W., Swanson, B.T., & Ortiz, A. (2017). Validity of Fitbit’s active minutes as compared with a research-grade accelerometer and self-reported measures. BMJ Open Sport & Exercise Medicine, 3(1), e000254. PubMed ID: 29018543 doi:10.1136/bmjsem-2017-000254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byun, W., Kim, Y., & Brusseau, T.A. (2017). The Use of a Fitbit Device for Assessing Physical Activity and Sedentary Behavior in Preschoolers. The Journal of Pediatrics, 199, 3540. PubMed ID: 29754862 doi:10.1016/j.jpeds.2018.03.057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byun, W., Lee, J.M., Kim, Y., & Brusseau, T.A. (2018). Classification accuracy of a wearable activity tracker for assessing sedentary behavior and physical activity in 3–5-year-old children. International Journal of Environmental Research and Public Health, 15(4). doi:10.3390/ijerph15040594

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, A., Hensor, E.M.A., Mackie, S.L., Backhouse, M.R., & Harris, E. (2018). Preliminary concurrent validity of the Fitbit-Zip and ActiGraph activity monitors for measuring steps in people with polymyalgia rheumatica. Gait & Posture, 61, 339345. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=128611076&site=ehost-live&scope=site

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coughlin, S.S., & Stewart, J. (2016). Use of consumer wearable devices to promote physical activity: A review of health intervention studies. Journal of Environment and Health Sciences, 2(6). doi:10.3390/ijerph15040594

    • Search Google Scholar
    • Export Citation
  • Collins, J.E., Yang, H.Y., Trentadue, T.P., Gong, Y., & Losina, E. (2019). Validation of the Fitbit Charge 2 compared to the ActiGraph GT3X+ in older adults with knee osteoarthritis in free-living conditions. PLoS One, 14(1), e0211231. PubMed ID: 30477509 doi:10.1371/journal.pone.0211231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degroote, L., De Bourdeaudhuij, I., Verloigne, M., Poppe, L., & Crombez, G. (2018). The Accuracy of Smart Devices for Measuring Physical Activity in Daily Life: Validation Study. JMIR Mhealth Uhealth, 6(12), e10972. PubMed ID: 30545810 doi:10.2196/10972

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominick, G.M., Winfree, K.N., Pohlig, R.T., & Papas, M.A. (2016). Physical activity assessment between consumer- and research-grade accelerometers: A comparative study in free-living conditions. JMIR mHealth uHealth, 4(3), e110. PubMed ID: 27644334 doi:10.2196/mhealth.6281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dooley, E.E., Golaszewski, N.M., & Bartholomew, J.B. (2017). Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR mHealth uHealth, 5(3), e34. PubMed ID: 28302596 doi:10.2196/mhealth.7043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downs, S.H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology & Community Health, 52(6), 377384. PubMed ID: 9764259 doi:10.1136/jech.52.6.377

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Goto, M.M., & Furberg, R.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, T., Rowlands, A.V., Olds, T., & Maher, C. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 42. PubMed ID: 25890168 doi:10.1186/s12966-015-0201-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Floegel, T.A., Florez-Pregonero, A., Hekler, E.B., & Buman, M.P. (2017). Validation of consumer-based hip and wrist activity monitors in older adults with varied ambulatory abilities. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72(2), 229236. PubMed ID: 27257217 doi:10.1093/gerona/glw098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuezeki, E., Engeroff, T., & Banzer, W. (2017). Health benefits of light-intensity physical activity: A systematic review of accelerometer data of the National Health and Nutrition Examination Survey (NHANES). Sports Medicine, 47(9), 17691793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garriguet, D., & Colley, R.C. (2014). A comparison of self-reported leisure-time physical activity and measured moderate-to-vigorous physical activity in adolescents and adults. Public Health Reports, 25(7), 311.

    • Search Google Scholar
    • Export Citation
  • Gierisch, J.M., Goode, A.P., Batch, B.C., Huffman, K.N., Hall, K.S., Hastings, S.N., … Williams, J.W., Jr. (2015). VA evidence-based synthesis program reports. In The impact of wearable motion sensing technologies on physical activity: A systematic review. Washington, DC: U.S. Department of Veterans Affairs.

    • Search Google Scholar
    • Export Citation
  • Gomersall, S.R., Ng, N., Burton, N.W., Pavey, T.G., Gilson, N.D., & Brown, W.J. (2016). Estimating physical activity and sedentary behavior in a free-living context: A pragmatic comparison of consumer-based activity trackers and actigraph accelerometry. Journal of Medical Internet Research, 18(9), e239. PubMed ID: 27604226 doi:10.2196/jmir.5531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heesch, K.C., Hill, R.L., Aguilar-Farias, N., van Uffelen, J.G.Z., & Pavey, T. (2018). Validity of objective methods for measuring sedentary behaviour in older adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 119. PubMed ID: 30477509 doi:10.1186/s12966-018-0749-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Help Article: What are active minutes. (2015). Fitbit. Retrieved from http://help.fitbit.com/articles/en_US/Help_article/What-are-very-active-minutes/

    • Search Google Scholar
    • Export Citation
  • Henriksen, A., Haugen Mikalsen, M., Woldaregay, A.Z., Muzny, M., Hartvigsen, G., Hopstock, L.A., & Grimsgaard, S. (2018). Using fitness trackers and smartwatches to measure physical activity in research: Analysis of consumer wrist-worn wearables. Journal of Medical Internet Research, 20(3), e110. PubMed ID: 29567635 doi:10.2196/jmir.9157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., Xu, J., Yu, B., & Shull, P.B. (2016). Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. Gait & Posture, 48, 3641. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=116906805&site=ehost-live&scope=site

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huberty, J.L., Buman, M.P., Leiferman, J.A., Bushar, J., Hekler, E.B., & Adams, M.A. (2017). Dose and timing of text messages for increasing physical activity among pregnant women: A randomized controlled trial. Translational Behavioral Medicine, 7(2), 212223. PubMed ID: 27800565 doi:10.1007/s13142-016-0445-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hui, J., Heyden, R., Bao, T., Accettone, N., McBay, C., Richardson, J., & Tang, A. (2018). Validity of the Fitbit One for Measuring Activity in Community-Dwelling Stroke Survivors. Physiotherapy Canada, 70(1), 8189. PubMed ID: 29434422 doi:10.3138/ptc.2016-40.ep

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imboden, M.T., Nelson, M.B., Kaminsky, L.A., & Montoye, A.H. (2017). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British Journal of Sports Medicine. doi:10.1136/bjsports-2016-096990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jo, E., Lewis, K., Directo, D., Kim, M.J., & Dolezal, B.A. (2016). Validation of biofeedback wearables for photoplethysmographic heart rate tracking. Journal of Sports Science and Medicine, 15(3), 540547. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=117408634&site=ehost-live&scope=site

    • Search Google Scholar
    • Export Citation
  • Kaewkannate, K., & Kim, S. (2016). A comparison of wearable fitness devices. BMC Public Health, 16(1), 433. PubMed ID: 27220855 doi:10.1186/s12889-016-3059-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S.G., Kang, J.M., Ko, K.P., Park, S.C., Mariani, S., & Weng, J. (2017). Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers. Journal of Psychosomatic Research, 97, 3844. PubMed ID: 28606497 doi:10.1016/j.jpsychores.2017.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S., Kim, Y., Byun, W., Suk, J., & Lee, J.M. (2019). Comparison of a Wearable Tracker with Actigraph for Classifying Physical Activity Intensity and Heart Rate in Children. International Journal of Environmental Research and Public Health, 16(15), 2663. PubMed ID: 31349667 doi:10.3390/ijerph16152663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L.Y., & Getchell, N. (2018). A preliminary comparison of physical activity intensity classification and step counts between the Fitbit Zip and Actical accelerometer during treadmill locomotion. Gazzetta Medica Italiana Archivio per le Scienze Mediche, 177(9), 417424.

    • Search Google Scholar
    • Export Citation
  • Lunney, A., Cunningham, N.R., & Eastin, M.S. (2016). Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes. Computers in Human Behavior, 65, 114120. doi:10.1016/j.chb.2016.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, J., Gravel, N., & Spencer, R.M. (2016). Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors (Basel), 16(5): 646. doi:10.3390/s16050646

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mobbs, R.J., Phan, K., Maharaj, M., & Rao, P.J. (2016). Physical activity measured with accelerometer and self-rated disability in lumbar spine surgery: A prospective study. Global Spine Journal, 6(5), 459464. PubMed ID: 27433430 doi:10.1055/s-0035-1565259

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(6), e1000097. doi:10.1371/journal.pmed.1000097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Moore, R.W., Bowles, H.R., Korycinski, R., & Pfeiffer, K.A. (2018). Reporting accelerometer methods in physical activity intervention studies: A systematic review and recommendations for authors. British Journal of Sports Medicine, 52(23), 15071516. PubMed ID: 27539504 doi:10.1136/bjsports-2015-095947

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooses, K., Oja, M., Reisberg, S., Vilo, J., & Kull, M. (2018). Validating Fitbit Zip for monitoring physical activity of children in school: a cross-sectional study. BMC Public Health, 18(1), 858. PubMed ID: 29996797 doi:10.1186/s12889-018-5752-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Driscoll, R., Turicchi, J., Beaulieu, K., Scott, S., Matu, J., Deighton, K., … Stubbs, J. (2018). How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine. doi:10.1136/bjsports-2018-099643

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Phillips, L.J., Petroski, G.F., & Markis, N.E. (2015). A comparison of accelerometer accuracy in older adults. Research in Gerontological Nursing, 8(5), 213219. PubMed ID: 25942386 doi:10.3928/19404921-20150429-03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Physical Activity Guidelines Advisory Committee. (2018). Physical activity guidelines advisory committee scientific report (F2–33). Washington, DC: US Department of Health and Human Services.

    • Search Google Scholar
    • Export Citation
  • Physical Activity Guidelines Advisory Committee Report 2008. To the Secretary of Health and Human Services. Part A: Executive summary. (2009). Nutrition Reviews, 67(2), 114120. doi:10.1111/j.1753-4887.2008.00136.x

    • Search Google Scholar
    • Export Citation
  • Price, K., Bird, S.R., Lythgo, N., Raj, I.S., Wong, J.Y., & Lynch, C. (2017). Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. Journal of Medical Engineering & Technology, 41(3), 208215. PubMed ID: 27919170 doi:10.1080/03091902.2016.1253795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, S.A., Adamo, K.B., Hamel, M.E., Hardt, J., Connor Gorber, S., & Tremblay, M. (2008). A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 5(1), 56. PubMed ID: 18990237 doi:10.1186/1479-5868-5-56

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redenius, N., Kim, Y., & Byun, W. (2019). Concurrent validity of the Fitbit for assessing sedentary behavior and moderate-to-vigorous physical activity. BMC Medical Research Methodology, 19(1), 29. PubMed ID: 30732582 doi:10.1186/s12874-019-0668-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roos, L., Taube, W., Beeler, N., & Wyss, T. (2017). Validity of sports watches when estimating energy expenditure during running. BMC Sports Science, Medicine & Rehabilitation, 9, 18. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=127038926&site=ehost-live&scope=site

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Buman, M.P., Haskell, W.L., McConnell, M.V., & Carstensen, L.L. (2016). Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Medicine & Science in Sports & Exercise, 48(3), 457465. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=113219482&site=ehost-live&scope=site

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Fulton, J.E., Buman, M.P., Troiano, R.P., Grandner, M.A., Buchner, D.M., & Haskell, W.L. (2019). The 24-hour activity cycle: A new paradigm for physical activity. Medicine & Science in Sports & Exercise, 51(3), 454464. PubMed ID: 30339658 doi:10.1249/MSS.0000000000001811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, M., & Chau, L. (2016). Validation of the Fitbit Zip for monitoring physical activity among free-living adolescents. BMC Research Notes, 9(1), 448. PubMed ID: 27655477 doi:10.1186/s13104-016-2253-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., Mattsson, C.M., Waggott, D., Salisbury, H., Christle, J.W., Hastie, T., … Ashley, E.A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine, 7(2), 3. doi:10.3390/jpm7020003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Laurent, A., Mony, M.M., Mathieu, M.E., & Ruchat, S.M. (2018). Validation of the Fitbit Zip and Fitbit Flex with pregnant women in free-living conditions. Journal of Medical Engineering & Technology, 42(4), 259264. PubMed ID: 30198806 doi:10.1080/03091902.2018.1472822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sushames, A., Edwards, A., Thompson, F., McDermott, R., & Gebel, K. (2016). Validity and reliability of Fitbit flex for step count, moderate to vigorous physical activity and activity energy expenditure. PLoS One, 11(9), e0161224. PubMed ID: 27589592 doi:10.1371/journal.pone.0161224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, S., Sica, M., Ancillao, A., Timmons, S., Barton, J., & O'Flynn, B. (2019). Validity Evaluation of the Fitbit Charge2 and the Garmin vivosmart HR+ in Free-Living Environments in an Older Adult Cohort. Journal of Medical Internet Research Mhealth Uhealth, 7(6), e13084. PubMed ID: 31219048 doi:10.2196/13084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, L.P., Park, S., Springer, C.M., Feyerabend, M.D., Steeves, J.A., & Bassett, D.R. (2018). Video-recorded validation of wearable step counters under free-living conditions. Medicine & Science in Sports & Exercise, 50(6), 13151322. PubMed ID: 29381649 doi:10.1249/MSS.0000000000001569

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treacy, D., Hassett, L., Schurr, K., Chagpar, S., Paul, S.S., & Sherrington, C. (2017). Validity of different activity monitors to count steps in an inpatient rehabilitation setting. Physical Therapy, 97(5), 581588. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=123661185&site=ehost-live&scope=site

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummels, D., Beekman, E., Theunissen, K., Braun, S., & Beurskens, A.J. (2018). Counting steps in activities of daily living in people with a chronic disease using nine commercially available fitness trackers: Cross-sectional validity study. JMIR mHealth uHealth, 6(4), e70. PubMed ID: 29610110 doi:10.2196/mhealth.8524

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Blarigan, E.L., Kenfield, S.A., Tantum, L., Cadmus-Bertram, L.A., Carroll, P.R., & Chan, J.M. (2017). The Fitbit One physical activity tracker in men with prostate cancer: Validation study. JMIR Cancer, 3(1), e5. doi:10.2196/cancer.6935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voss, C., Gardner, R.F., Dean, P.H., & Harris, K.C. (2017). Validity of commercial activity trackers in children with congenital heart disease. Canadian Journal of Cardiology, 33(6), 799805. PubMed ID: 28347581 doi:10.1016/j.cjca.2016.11.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warburton, D.E., Charlesworth, S., Ivey, A., Nettlefold, L., & Bredin, S.S. (2010). A systematic review of the evidence for Canada’s physical activity guidelines for adults. International Journal of Behavioral Nutrition and Physical Activity, 7(1), 39. doi:10.1186/1479-5868-7-39

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J. (2019). Harmonizing monitor-and report-based estimates of physical activity through calibration. Kinesiology Review, 8(1), 1624. doi:10.1123/kr.2018-0064

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J., Bai, Y., Lee, J.-M., Godino, J., Saint-Maurice, P.F., & Carr, L. (2019). Standardizing analytic methods and reporting in activity monitor validation studies. Medicine & Science in Sports & Exercise, 51(8), 1767. PubMed ID: 30913159 doi:10.1249/MSS.0000000000001966

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodman, J.A., Crouter, S.E., Bassett, D.R., Jr., Fitzhugh, E.C., & Boyer, W.R. (2017). Accuracy of consumer monitors for estimating energy expenditure and activity type. Medicine & Science in Sports & Exercise, 49(2), 371377. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=sph&AN=120904259&site=ehost-live&scope=site

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yavelberg, L., Zaharieva, D., Cinar, A., Riddell, M.C., & Jamnik, V. (2018). A pilot study validating select research-grade and consumer-based wearables throughout a range of dynamic exercise intensities in persons with and without type 1 diabetes: A novel approach. Journal of Diabetes Science and Technology, 12(3), 569576. PubMed ID: 29320885 doi:10.1177/1932296817750401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., McClean, D., Ko, E., Morgan, M.A., & Schmitz, K. (2017). Exercise among women with ovarian cancer: A feasibility and pre-/post-test exploratory pilot study. Oncology Nursing Forum, 44(3), 366374. PubMed ID: 28635971 doi:10.1188/17.ONF.366-374

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 457 457 134
PDF Downloads 78 78 27