Comparison of a Thigh-Worn Accelerometer Algorithm With Diary Estimates of Time in Bed and Time Asleep: The 1970 British Cohort Study

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 The University of Sydney
  • 2 Loughborough University
  • 3 Maastricht University
  • 4 Uppsala University
  • 5 University College London
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Background: Thigh-worn accelerometers have established reliability and validity for measurement of free-living physical activity-related behaviors. However, comparisons of methods for measuring sleep and time in bed using the thigh-worn accelerometer are rare. The authors compared the thigh-worn accelerometer algorithm that estimates time in bed with the output of a sleep diary (time in bed and time asleep). Methods: Participants (N = 5,498), from the 1970 British Cohort Study, wore an activPAL device on their thigh continuously for 7 days and completed a sleep diary. Bland–Altman plots and Pearson correlation coefficients were used to examine associations between the algorithm derived and diary time in bed and asleep. Results: The algorithm estimated acceptable levels of agreement with time in bed when compared with diary time in bed (mean bias of −11.4 min; limits of agreement −264.6 to 241.8). The algorithm-derived time in bed overestimated diary sleep time (mean bias of 55.2 min; limits of agreement −204.5 to 314.8 min). Algorithm and sleep diary are reasonably correlated (ρ = .48, 95% confidence interval [.45, .52] for women and ρ = .51, 95% confidence interval [.47, .55] for men) and provide broadly comparable estimates of time in bed but not for sleep time. Conclusions: The algorithm showed acceptable estimates of time in bed compared with diary at the group level. However, about half of the participants were outside of the ±30 min difference of a clinically relevant limit at an individual level.

Hamer and Stamatakis are joint senior authors. Inan-Eroglu, Huang, and Stamatakis are with the Charles Perkins Centre, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, Australia. Shepherd is with the Prevention Research Collaboration, School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia. Pearson is with the School of Sport Exercise Health Sciences, Loughborough University, Loughborough, United Kingdom. Koster is with the Department of Social Medicine, CAPHRI Care and Public Health Research School, Maastricht University, Maastricht, The Netherlands. Palm is with the School of Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Cistulli is with the Sleep Research Group, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia. Hamer is with the Division Surgery Interventional Sciences, Faculty of Medical Sciences, Institute Sport Exercise Health, University College London, London, United Kingdom.

Stamatakis (emmanuel.stamatakis@sydney.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 784 KB)
    • Supplementary Figure S2 (PDF 317 KB)
    • Supplementary Figure S3 (PDF 294 KB)
    • Supplementary Figure S4 (PDF 1013 KB)
    • Supplementary Material 1 (PDF 392 KB)
    • Supplementary Table S1 (PDF 415 KB)
    • Supplementary Table S2 (PDF 396 KB)
    • Supplementary Table S3 (PDF 326 KB)
    • Supplementary Table S4 (PDF 501 KB)
    • Supplementary Table S5 (PDF 334 KB)
    • Supplementary Table S6 (PDF 219 KB)
    • Supplementary Table S7 (PDF 332 KB)
    • Supplementary Table S8 (PDF 500 KB)
    • Supplementary Table S9 (PDF 501 KB)
  • Arora, T., Broglia, E., Pushpakumar, D., Lodhi, T., & Taheri, S. (2013). An investigation into the strength of the association and agreement levels between subjective and objective sleep duration in adolescents. PLoS One, 8(8), e72406. PubMed ID: 23951321 doi:10.1371/journal.pone.0072406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V.S., Karanikolos, M., Clair, A., Reeves, A., Stuckler, D., & McKee, M. (2015). Data resource profile: The European Union statistics on income and living conditions (EU-SILC). International Journal of Epidemiology, 44(2), 451461. PubMed ID: 25948659 doi:10.1093/ije/dyv069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbaresko, J., Rienks, J., & Nöthlings, U. (2018). Lifestyle indices and cardiovascular disease risk: A meta-analysis. American Journal of Preventive Medicine, 55(4), 555564. PubMed ID: 30241617 doi:10.1016/j.amepre.2018.04.046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biddle, G.J., Edwardson, C.L., Henson, J., Davies, M.J., Khunti, K., Rowlands, A.V., & Yates, T. (2018). Associations of physical behaviours and behavioural reallocations with markers of metabolic health: A compositional data analysis. International Journal of Environmental Research and Public Health, 15(10), 2280. PubMed ID: 30336601 doi:10.3390/ijerph15102280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackwell, T., Ancoli-Israel, S., Redline, S., Stone, K.L., & Osteoporotic Fractures in Men (MrOS) Study Group. (2011). Factors that may influence the classification of sleep-wake by wrist actigraphy: The MrOS Sleep Study. Journal of Clinical Sleep Medicine, 7(4), 357367. PubMed ID: 21897772 doi:10.5664/JCSM.1190

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campanini, M.Z., Lopez-Garcia, E., Rodríguez-Artalejo, F., González, A.D., Andrade, S.M., & Mesas, A.E. (2017). Agreement between sleep diary and actigraphy in a highly educated Brazilian population. Sleep Medicine, 35, 2734. PubMed ID: 28619179 doi:10.1016/j.sleep.2017.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahlgren, G., Carlsson, D., Moorhead, A., Häger-Ross, C., & McDonough, S.M. (2010). Test–retest reliability of step counts with the ActivPAL™ device in common daily activities. Gait & Posture, 32(3), 386390. PubMed ID: 20655228 doi:10.1016/j.gaitpost.2010.06.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Zambotti, M., Baker, F.C., & Colrain, I.M. (2015). Validation of sleep-tracking technology compared with polysomnography in adolescents. Sleep, 38(9), 14611468. PubMed ID: 26158896 doi:10.5665/sleep.4990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Zambotti, M., Rosas, L., Colrain, I.M., & Baker, F.C. (2019). The sleep of the ring: Comparison of the ŌURA sleep tracker against polysomnography. Behavioral Sleep Medicine, 17(2), 124136. PubMed ID: 28323455 doi:10.1080/15402002.2017.1300587

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, A., Jackson, D., Hammerla, N., Plötz, T., Olivier, P., Granat, M.H., … Preece, S.J. (2017). Large scale population assessment of physical activity using wrist worn accelerometers: The UK Biobank Study. PLoS One, 12(2), e0169649. PubMed ID: 28146576 doi:10.1371/journal.pone.0169649

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Winkler, E.A., Bodicoat, D.H., Yates, T., Davies, M.J., Dunstan, D.W., & Healy, G.N. (2017). Considerations when using the activPAL monitor in field-based research with adult populations. Journal of Sport and Health Science, 6(2), 162178. PubMed ID: 30356601 doi:10.1016/j.jshs.2016.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, J., & Shepherd, P. (2006). Cohort profile: 1970 British birth cohort (BCS70). International Journal of Epidemiology, 35(4), 836843. PubMed ID: 16931528 doi:10.1093/ije/dyl174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezeugwu, V.E., & Manns, P.J. (2017). Sleep duration, sedentary behavior, physical activity, and quality of life after inpatient stroke rehabilitation. Journal of Stroke and Cerebrovascular Diseases, 26(9), 20042012. PubMed ID: 28669653 doi:10.1016/j.jstrokecerebrovasdis.2017.06.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girschik, J., Fritschi, L., Heyworth, J., & Waters, F. (2012). Validation of self-reported sleep against actigraphy. Journal of Epidemiology, 22(5), 462468. PubMed ID: 22850546 doi:10.2188/jea.JE20120012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandner, M.A. (2017). Sleep, health, and society. Sleep Medicine Clinics, 12(1), 122. PubMed ID: 28159089 doi:10.1016/j.jsmc.2016.10.012

  • Hoevenaar-Blom, M.P., Spijkerman, A.M., Kromhout, D., & Verschuren, W.M. (2014). Sufficient sleep duration contributes to lower cardiovascular disease risk in addition to four traditional lifestyle factors: The MORGEN study. European Journal of Preventive Cardiology, 21(11), 13671375. PubMed ID: 23823570 doi:10.1177/2047487313493057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B.H., Inan-Eroglu, E., Hamer, M., & Stamatakis, E. (2020). Joint associations of device-measured physical activity and sleep duration with cardiometabolic health in the 1970 British Cohort Study. Journal of Science and Medicine in Sport, 23(12), 11911196. PubMed ID: 32859521 doi:10.1016/j.jsams.2020.07.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Wong, W.T., Zwetsloot, I.M., Hsu, Y.C., & Tsui, K.L. (2019). Preliminary agreement on tracking sleep between a wrist-worn device fitbit alta and consensus sleep diary. Telemedicine and e-Health, 25(12), 11891197. PubMed ID: 30601109 doi:10.1089/tmj.2018.0202

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Keadle, S.K., Staudenmayer, J., & Freedson, P.S. (2017). The activPAL™ accurately classifies activity intensity categories in healthy adults. Medicine & Science in Sports & Exercise, 49(5), 10221028. PubMed ID: 28410327 doi:10.1249/MSS.0000000000001177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.L., & Hakim, A.D. (2011). Wrist actigraphy. Chest, 139(6), 15141527. PubMed ID: 21652563 doi:10.1378/chest.10-1872

  • McCrae, C.S., Rowe, M.A., Tierney, C.G., Dautovich, N.D., DeFinis, A.L., & McNamara, J.P. (2005). Sleep complaints, subjective and objective sleep patterns, health, psychological adjustment, and daytime functioning in community-dwelling older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(4), P182P189. PubMed ID: 15980285 doi:10.1093/geronb/60.4.P182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, C.M., Schmiege, S.J., & Matthews, E.E. (2015). Actigraphy and sleep diary measurements in breast cancer survivors: Discrepancy in selected sleep parameters. Behavioral Sleep Medicine, 13(6), 472490. PubMed ID: 25117292 doi:10.1080/15402002.2014.940108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, M., Badland, H.M., Shepherd, J., & Schofield, G.M. (2011). Counting steps in research: A comparison of accelerometry and pedometry. Open Journal of Preventive Medicine, 1(1), 1. doi:10.4236/ojpm.2011.11001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemann, D. (2012). Insomnia is coming of age. Sleep, 35(2), 175. PubMed ID: 22294806 doi:10.5665/sleep.1614

  • Schuirmann, D.J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15(6), 657680. PubMed ID: 3450848 doi:10.1007/BF01068419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Short, M.A., Gradisar, M., Lack, L.C., Wright, H., & Carskadon, M.A. (2012). The discrepancy between actigraphic and sleep diary measures of sleep in adolescents. Sleep Medicine, 13(4), 378384. PubMed ID: 22437142 doi:10.1016/j.sleep.2011.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tonetti, L., Mingozzi, R., & Natale, V. (2016). Comparison between paper and electronic sleep diary. Biological Rhythm Research, 47(5), 743753. doi:10.1080/09291016.2016.1191689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • University of London IoE, Centre for Longitudinal Studies. (2019). 1970 British Cohort Study: Forty-Six- Year Follow-Up, 2016–2018. UK Data Service. doi:10.5255/UKDA-SN-8547-1

    • Search Google Scholar
    • Export Citation
  • Van de Water, A.T., Holmes, A., & Hurley, D.A. (2011). Objective measurements of sleep for non‐laboratory settings as alternatives to polysomnography—A systematic review. Journal of Sleep Research, 20(1 pt 2), 183200. PubMed ID: 20374444 doi:10.1111/j.1365-2869.2009.00814.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Berg, J.D., Willems, P.J., van der Velde, J.H., Savelberg, H.H., Schaper, N.C., Schram, M.T., … Koster, A. (2016). Identifying waking time in 24-h accelerometry data in adults using an automated algorithm. Journal of Sports Sciences, 34(19), 18671873. PubMed ID: 26837855 doi:10.1080/02640414.2016.1140908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Velde, J.H., Schaper, N.C., Stehouwer, C.D., van der Kallen, C.J., Sep, S.J., Schram, M.T., … Savelberg, H.H. (2018). Which is more important for cardiometabolic health: sedentary time, higher intensity physical activity or cardiorespiratory fitness? The Maastricht Study. Diabetologia, 61(12), 25612569. PubMed ID: 30198051 doi:10.1007/s00125-018-4719-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, E.A., Bodicoat, D.H., Healy, G.N., Bakrania, K., Yates, T., Owen, N., … Edwardson, C.L. (2016). Identifying adults’ valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiological Measurement, 37(10), 1653. PubMed ID: 27652827 doi:10.1088/0967-3334/37/10/1653

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Keadle, S.K., Hollenbeck, A.R., & Matthews, C.E. (2014). Sleep duration and total and cause-specific mortality in a large US cohort: Interrelationships with physical activity, sedentary behavior, and body mass index. American Journal of Epidemiology, 180(10), 9971006. PubMed ID: 25281691 doi:10.1093/aje/kwu222

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 9 9 0
Full Text Views 329 329 120
PDF Downloads 84 84 33