Agreement of Sedentary Behavior Metrics Derived From Hip- and Thigh-Worn Accelerometers Among Older Adults: With Implications for Studying Physical and Cognitive Health

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 University of California San Diego
  • | 2 Children’s Mercy Hospital
  • | 3 University of Missouri–Kansas City
  • | 4 Deakin University
  • | 5 Kaiser Permanente Washington Health Research Institute
Restricted access

Little is known about how sedentary behavior (SB) metrics derived from hip- and thigh-worn accelerometers agree for older adults. Thigh-worn activPAL (AP) micro monitors were concurrently worn with hip-worn ActiGraph (AG) GT3X+ accelerometers (with SB measured using the 100 counts per minute [cpm] cut point; AG100cpm) by 953 older adults (age 77 ± 6.6, 54% women) for 4–7 days. Device agreement for sedentary time and five SB pattern metrics was assessed using mean error and correlations. Logistic regression tested associations with four health outcomes using standardized (i.e., z scores) and unstandardized SB metrics. Mean errors (AP − AG100cpm) and 95% limits of agreement were: sedentary time −54.7 [−223.4, 113.9] min/day; time in 30+ min bouts 77.6 [−74.8, 230.1] min/day; mean bout duration 5.9 [0.5, 11.4] min; usual bout duration 15.2 [0.4, 30] min; breaks in sedentary time −35.4 [−63.1, −7.6] breaks/day; and alpha −.5 [−.6, −.4]. Respective Pearson correlations were: .66, .78, .73, .79, .51, and .40. Concordance correlations were: .57, .67, .40, .50, .14, and .02. The statistical significance and direction of associations were identical for AG100cpm and AP metrics in 46 of 48 tests, though significant differences in the magnitude of odds ratios were observed among 13 of 24 tests for unstandardized and five of 24 for standardized SB metrics. Caution is needed when interpreting SB metrics and associations with health from AG100cpm due to the tendency for it to overestimate breaks in sedentary time relative to AP. However, high correlations between AP and AG100cpm measures and similar standardized associations with health outcomes suggest that studies using AG100cpm are useful, though not ideal, for studying SB in older adults.

Rosenberg and Natarajan are co-senior authors. Bellettiere, Tuz-Zahra, Liles, LaCroix, and Natarajan are with the Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA. Carlson is with the Center for Children’s Healthy Lifestyles and Nutrition, Children’s Mercy Hospital, Kansas City, MO, USA; and the Department of Pediatrics, Children’s Mercy Hospital and University of Missouri, Kansas City, Kansas City, MO, USA. Ridgers is with the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia. Greenwood-Hickman, Walker, and Rosenberg are with the Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA. Jankowska is with the Qualcomm Institute/Calit2, University of California San Diego, La Jolla, CA, USA.

Bellettiere (jbellettiere@ucsd.edu) is corresponding author.

Supplementary Materials

    • Supplementary Figure 1 (PDF 624 KB)
    • Supplementary Figure 2 (PDF 798 KB)
    • Supplementary Table 1 (PDF 208 KB)
  • Aguilar-Farías, N., Brown, W.J., & Peeters, G.M.E.E.G. (2014). ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. Journal of Science and Medicine in Sport, 17(3), 293299. PubMed ID: 23932934 doi:10.1016/j.jsams.2013.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreira, T.V., Zderic, T.W., Schuna, J.M., Hamilton, M.T., & Tudor-Locke, C. (2015). Free-Living activity counts-derived breaks in sedentary time: Are they real transitions from sitting to standing? Gait & Posture, 42(1), 7072. PubMed ID: 25953504 doi:10.1016/j.gaitpost.2015.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellettiere, J., LaMonte, M.J., Evenson, K.R., Rillamas-Sun, E., Kerr, J., Lee, I.-M., … LaCroix, A.Z. (2019). Sedentary behavior and cardiovascular disease in older women: The OPACH study. Circulation, 139(8), 10361046. PubMed ID: 31031411 doi:10.1161/CIRCULATIONAHA.118.035312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellettiere, J., Winkler, E.A.H., Chastin, S.F.M., Kerr, J., Owen, N., Dunstan, D.W., & Healy, G.N. (2017). Associations of sitting accumulation patterns with cardio-metabolic risk biomarkers in Australian adults. PLoS One, 12(6), e0180119. PubMed ID: 28662164 doi:10.1371/journal.pone.0180119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bland, J.M., & Altman, D.G. (2007). Agreement between methods of measurement with multiple observations per individual. Journal of Biopharmaceutical Statistics, 17(4), 571582. PubMed ID: 17613642 doi:10.1080/10543400701329422

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocklebank, L.A., Falconer, C.L., Page, A.S., Perry, R., & Cooper, A.R. (2015). Accelerometer-Measured sedentary time and cardiometabolic biomarkers: A systematic review. Preventive Medicine, 76, 92102. PubMed ID: 25913420 doi:10.1016/j.ypmed.2015.04.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, J.A., Bellettiere, J., Kerr, J., Salmon, J., Timperio, A., Verswijveren, S.J.J.M., & Ridgers, N.D. (2019). Day-level sedentary pattern estimates derived from hip-worn accelerometer cut-points in 8–12-year-olds: Do they reflect postural transitions? Journal of Sports Sciences, 37(16), 18991909. PubMed ID: 31002287 doi:10.1080/02640414.2019.1605646

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F.M., & Granat, M.H. (2010). Methods for objective measure, quantification and analysis of sedentary behaviour and inactivity. Gait and Posture, 31(1), 8286. PubMed ID: 19854651 doi:10.1016/j.gaitpost.2009.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F.M., Winkler, E.A.H., Eakin, E.G., Gardiner, P.A., Dunstan, D.W., Owen, N., & Healy, G.N. (2015). Sensitivity to change of objectively-derived measures of sedentary behavior. Measurement in Physical Education and Exercise Science, 19(3), 138147. doi:10.1080/1091367X.2015.1050592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, E.C., Yip, P.K., Woo, P., & Lin, Y.Te. (2019). Test-retest reliability and minimal detectable change of the Cognitive Abilities Screening Instrument in patients with dementia. PLoS One, 14(5), e0216450. PubMed ID: 31063491 doi:10.1371/journal.pone.0216450

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise, 43(2), 357364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Ward, S.C., Schnelle, J.F., & Buchowski, M.S. (2012). Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Medicine & Science in Sports & Exercise, 44(10), 20092016. PubMed ID: 22525772 doi:10.1249/MSS.0b013e318258cb36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Oliveira, G.M., Yokomizo, J.E., E Silva, L.D.S.V., Saran, L.F., Bottino, C.M.C., & Yassuda, M.S. (2016). The applicability of the cognitive abilities screening instrument-short (CASI-S) in primary care in Brazil. International Psychogeriatrics, 28(1), 9399. PubMed ID: 25921381 doi:10.1017/S1041610215000642

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, K.M., Goldsmith, J., Greenlee, H., Strizich, G., Qi, Q., Mossavar-Rahmani, Y., … Kaplan, R. (2017). Prolonged, uninterrupted sedentary behavior and glycemic biomarkers among US Hispanic/Latino adults: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Circulation, 136(15), 13621373. PubMed ID: 28835368 doi:10.1161/CIRCULATIONAHA.116.026858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, K.M., Howard, V.J., Hutto, B., Colabianchi, N., Vena, J.E., Blair, S.N., & Hooker, S.P. (2016). Patterns of sedentary behavior in US middle-age and older adults: The REGARDS study. Medicine & Science in Sports & Exercise, 48(3), 430438. PubMed ID: 26460633 doi:10.1249/MSS.0000000000000792

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, K.M., Howard, V.J., Hutto, B., Colabianchi, N., Vena, J.E., Safford, M.M., … Hooker, S.P. (2017). Patterns of sedentary behavior and mortality in U.S. middle-aged and older adults a national cohort study. Annals of Internal Medicine, 167(7), 465475. PubMed ID: 28892811 doi:10.7326/M17-0212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Liu, B., Sun, Y., Snetselaar, L.G., Wallace, R.B., & Bao, W. (2019). Trends in adherence to the physical activity guidelines for Americans for aerobic activity and time spent on sedentary behavior among US adults, 2007 to 2016. JAMA Network Open, 2(7), e197597. PubMed ID: 31348504 doi:10.1001/jamanetworkopen.2019.7597

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Winkler, E.A.H., Bodicoat, D.H., Yates, T., Davies, M.J., Dunstan, D.W., & Healy, G.N. (2016). Considerations when using the activPAL monitor in field based research with adult populations. Journal of Sport and Health Science, 6(2), 162178. PubMed ID: 30356601 doi:10.1016/j.jshs.2016.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazer, N.L., Lyass, A., Esliger, D.W., Blease, S.J., Freedson, P.S., Massaro, J.M., … Vasan, R.S. (2013). Sustained and shorter bouts of physical activity are related to cardiovascular health. Medicine & Science in Sports & Exercise, 45(1), 109115. PubMed ID: 22895372 doi:10.1249/MSS.0b013e31826beae5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, N.J., & Fitzmaurice, G.M. (2004). Regression analysis of multiple source and multiple informant data from complex survey samples. Statistics in Medicine, 23(18), 29112933. PubMed ID: 15344194 doi:10.1002/sim.1879

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jefferis, B.J., Parsons, T.J., Sartini, C., Ash, S., Lennon, L.T., Papacosta, O., … Whincup, P.H. (2019). Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: Does volume of activity matter more than pattern of accumulation? British Journal of Sports Medicine, 53(16), 10131020. PubMed ID: 29440040 doi:10.1136/bjsports-2017-098733

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jefferis, B.J., Sartini, C., Shiroma, E., Whincup, P.H., Wannamethee, S.G., & Lee, I.M. (2015). Duration and breaks in sedentary behaviour: Accelerometer data from 1566 community-dwelling older men (British Regional Heart Study). British Journal of Sports Medicine, 49(24), 15911594. PubMed ID: 25232029 doi:10.1136/bjsports-2014-093514

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzmarzyk, P.T. (2014). Standing and mortality in a prospective cohort of Canadian adults. Medicine & Science in Sports & Exercise, 46(5), 940946. PubMed ID: 24152707 doi:10.1249/MSS.0000000000000198

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzmarzyk, P.T., Powell, K.E., Jakicic, J.M., Troiano, R.P., Piercy, K., & Tennant, B. (2019). Sedentary behavior and health: Update from the 2018 physical activity guidelines advisory committee. Medicine & Science in Sports & Exercise, 51(6), 12271241. PubMed ID: 31095080 doi:10.1249/MSS.0000000000001935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, J., Carlson, J., Godbole, S., Cadmus-Bertram, L., Bellettiere, J., & Hartman, S. (2018). Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods Medicine & Science in Sports & Exercise, 50(7), 15181524. doi:10.1249/MSS.0000000000001578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, A., Shiroma, E., Caserotti, P., Mathews, C., Chen, K., Glynn, N., & Harris, T. (2016). Comparison of sedentary estimates between activPAL and hip- and wrist-worn actiGraph. Medicine & Science in Sports & Exercise, 48(8), 15141522. PubMed ID: 27031744 doi:10.1249/MSS.0000000000000924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.-M., & Shiroma, E.J. (2014). Using accelerometers to measure physical activity in large-scale epidemiological studies: Issues and challenges. British Journal of Sports Medicine, 48(3), 197201. PubMed ID: 24297837 doi:10.1136/bjsports-2013-093154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lord, S., Chastin, S.F.M., McInnes, L., Little, L., Briggs, P., & Rochester, L. (2011). Exploring patterns of daily physical activity and sedentary behaviour in community-dwelling older adults. Age and Ageing, 40(2), 205210. PubMed ID: 21239410 doi:10.1093/ageing/afq166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Kozey Keadle, S.L., Staudenmayer, J.W., & Freedson, P.S. (2012). Validity of two wearable monitors to estimate breaks from sedentary time. Medicine & Science in Sports & Exercise, 44(11), 22432252. PubMed ID: 22648343 doi:10.1249/MSS.0b013e318260c477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., George, S.M., Moore, S.C., Bowles, H.R., Blair, A., Park, Y., … Schatzkin, A. (2012). Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. American Journal of Clinical Nutrition, 95(2), 437445. PubMed ID: 22218159 doi:10.3945/ajcn.111.019620

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Nyström, C.D., Mora-Gonzalez, J., Löf, M., … Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J. (2015). ActiGraph cross-generation accuracy confirmation. Retrieved from https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2018/03/11163743/cross-generation-accuracy.pdf

    • Search Google Scholar
    • Export Citation
  • Nakandala, S., Jankowska, M., Tuz-Zahra, F., Bellettiere, J., Carlson, J.A., Natarajan , L. (2021). Application of convolutional neural network algorithms for advancing sedentary and activity bout classification. Journal for the Measurement of Physical Behaviour. Advance online publication. doi:10.1123/JMPB.2020-0016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purva, J., John, B., Nicole, G., Michael, J.L., Chongzhi, D., Robert, A.W., … Andrea, Z.L. (2021). v. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 76(1), 7784. doi:10.1093/gerona/glaa227

    • Search Google Scholar
    • Export Citation
  • Rosenberg, D., Walker, R., Greenwood-Hickman, M.A., Bellettiere, J., Xiang, Y., Richmire, K., … Lacroix, A.Z. (2020). Device-assessed physical activity and sedentary behavior in a community-based cohort of older adults. BMC Public Health, 20(1), 1256. PubMed ID: 32811454 doi:10.1186/s12889-020-09330-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, J.N., Matthews, C.E., Freedman, L.S., Carroll, R.J., & Kipnis, V. (2016). Methods to assess measurement error in questionnaires of sedentary behavior. Journal of Applied Statistics, 43(9), 17061721. doi:10.1080/02664763.2015.1117593

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, E.L., Hasegawa, K., Homma, A., Imai, Y., Larson, E., Graves, A., … White, L.R. (1994). The Cognitive Abilities Screening Instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia. International Psychogeriatrics, 6(1), 4558. PubMed ID: 8054493 doi:10.1017/S1041610294001602

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A.E., … Participants, on behalf of S. T. C. P. (2017). Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Department of Health and Human Services. (2018). Physical activity guidelines for Americans (2nd ed.). Retrieved from U.S. Department of Health and Human Services website: https://health.gov/paguidelines/second-edition/report/

    • Search Google Scholar
    • Export Citation
  • Ware, C.J.E., & Sherbourn, D. (1992). The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30(6), 473483. PubMed ID: 1593914 doi:10.1097/00005650-199206000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ware, J.E. (2000). SF-36 health survey update. Spine, 25(24), 31303139. PubMed ID: 11124729 doi:10.1097/00007632-200012150-00008

  • Winkler, E.A.H., Chastin, S., Eakin, E.G., Owen, N., Lamontagne, A.D., Moodie, M., … Healy, G.N. (2018). Cardiometabolic impact of changing sitting, standing, and stepping in the workplace. Medicine & Science in Sports & Exercise, 50(3), 516524. PubMed ID: 29166319 doi:10.1249/MSS.0000000000001453

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., Cao, C., Kantor, E.D., Nguyen, L.H., Zheng, X., Park, Y., … Cao, Y. (2019). Trends in sedentary behavior among the US population, 2001–2016. JAMA, 321(16), 1587. PubMed ID: 31012934 doi:10.1001/jama.2019.3636

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 23 0 0
Full Text Views 913 549 35
PDF Downloads 472 384 47