Comparison of Three Algorithms Using Thigh-Worn Accelerometers for Classifying Sitting, Standing, and Stepping in Free-Living Office Workers

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 The University of Queensland
  • 2 Queensland University of Technology
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Accurate measurement of time spent sitting, standing, and stepping is important in studies seeking to evaluate interventions to reduce sedentary behavior. In this study, the authors evaluated the agreement in classification of these activities from three algorithms applied to thigh-worn ActiGraph accelerometers using predictions from the widely used activPAL device as a criterion. Participants (n = 29, 72% female, age 23–68 years) wore the activPAL3 micro (processed by PAL software, version 7.2.32) and the ActiGraph GT9X accelerometer on the right front thigh concurrently for working hours on one full workday (7.2 ± 1.2 hr). ActiGraph output was classified via the three test algorithms: ActiGraph’s ActiLife software (inclinometer); an open source method; and, a machine-learning algorithm reported in the literature (Acti4). Performance at an instance level was evaluated by computing classification accuracy (F scores) for 15-s windows. The F scores showed high accuracy relative to the criterion for identifying sitting (96.7–97.1) and were 84.7–85.1 for identifying standing and 78.1–80.6 for identifying stepping. The four methods agreed strongly in total time spent sitting, standing, and stepping, with intraclass correlation coefficients of .96 (95% confidence interval [.92, .96]), .92 (95% confidence interval [.81, .96]), and .87 (95% confidence interval [.53, .95]) but sometimes overestimated sitting time and underestimated standing time relative to activPAL. These algorithms for identifying sitting, standing, and stepping from thigh-worn accelerometers provide estimates that are very similar to those obtained using the activPAL.

Clark and Winker are with the School of Public Health, The University of Queensland, Brisbane, Queensland, Australia. Ahmadi and Trost are with the School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

Clark (b.clark3@uq.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 223 KB)
    • Supplementary Table 2 (PDF 219 KB)
  • ActiGraph Support. (2019). How is inclination determined (for thigh wear location)? Retrieved from https://actigraphcorp.force.com/support/s/article/How-is-Inclination-Determined-for-Thigh-Wear-Location

    • Search Google Scholar
    • Export Citation
  • An, H.-S., Kim, Y., & Lee, J.-M. (2017). Accuracy of inclinometer functions of the activPAL and ActiGraph GT3X+: A focus on physical activity. Gait & Posture, 51, 174180. PubMed ID: 27780084 doi:10.1016/j.gaitpost.2016.10.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benatti, F.B., & Ried-Larsen, M. (2015). The effects of breaking up prolonged sitting time: A review of experimental studies. Medicine & Science in Sports & Exercise, 47(10), 20532061. PubMed ID: 26378942 doi:10.1249/MSS.0000000000000654

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemes, S.A., O’Connell, S.E., & Edwardson, C.L. (2014). Office workers’ objectively measured sedentary behavior and physical activity during and outside working hours. Journal of Occupational and Environmental Medicine, 56(3), 298303. PubMed ID: 24603203 doi:10.1097/JOM.0000000000000101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, P., Skotte, J., Stamatakis, E., Hamer, M., Aadahl, M., Stevens, M.L., … Holtermann, A. (2019). Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: A proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). International Journal of Behavioral Nutrition and Physical Activity, 16(1), 65. PubMed ID: 31419998 doi:10.1186/s12966-019-0835-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dempsey, P.C., Owen, N., Yates, T.E., Kingwell, B.A., & Dunstan, D.W. (2016). Sitting less and moving more: Improved glycaemic control for type 2 diabetes prevention and management. Current Diabetes Reports, 16(11), 114. PubMed ID: 27699700 doi:10.1007/s11892-016-0797-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Rowlands, A.V., Bunnewell, S., Sanders, J., Esliger, D.W., Gorely, T., … Yates, T. (2016). Accuracy of posture allocation algorithms for thigh- and waist-worn accelerometers. Medicine & Science in Sports & Exercise, 48(6), 10851090. PubMed ID: 26741122 doi:10.1249/MSS.0000000000000865

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G. (2016). Hip and wrist accelerometer algorithms for free-living behavior classification. Medicine & Science in Sports & Exercise, 48(5), 933940. PubMed ID: 26673126 doi:10.1249/MSS.0000000000000840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forman, G., & Scholz, M. (2010). Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. SIGKDD Explorations Newsletter, 12(1), 4957. doi:10.1145/1882471.1882479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, P., Ryan, C., Tigbe, W., & Granat, M. (2006). The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. British Journal of Sports Medicine, 40(12), 992997. PubMed ID: 16980531 doi:10.1136/bjsm.2006.030262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadgraft, N.T., Healy, G.N., Owen, N., Winkler, E.A., Lynch, B.M., Sethi, P., … Dunstan, D.W. (2016). Office workers’ objectively assessed total and prolonged sitting time: Individual-level correlates and worksite variations. Preventive Medicine Reports, 4, 184191. PubMed ID: 27413681 doi:10.1016/j.pmedr.2016.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, T.L., McClain, J.J., & Tudor-Locke, C. (2011). Controlled and free-living evaluation of objective measures of sedentary and active behaviors. Journal of Physical Activity and Health, 8(6), 848857. PubMed ID: 21832301 doi:10.1123/jpah.8.6.848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, G.N., Clark, B.K., Winkler, A.E., Gardiner, P.G., Brown, W.J., & Matthews, C.E. (2011). Measurement of adults’ sedentary time in population-based studies. American Journal of Preventive Medicine, 41(2), 216227. PubMed ID: 21767730 doi:10.1016/j.amepre.2011.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, M., Hansen, B.H., van Hees, V.T., & Ekelund, U. (2017). Evaluation of raw acceleration sedentary thresholds in children and adults. Scandinavian Journal of Medicine & Science in Sports, 27(12), 18141823. PubMed ID: 27878845 doi:10.1111/sms.12795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzmarzyk, P.T., Powell, K.E., Jakicic, J.M., Troiano, R.P., Piercy, K., & Tennant, B. (2019). Sedentary behavior and health: Update from the 2018 physical activity guidelines advisory committee. Medicine & Science in Sports & Exercise, 51(6), 12271241. PubMed ID: 31095080 doi:10.1249/MSS.0000000000001935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, J., Carlson, J., Godbole, S., Cadmus-Bertram, L., Bellettiere, J., & Hartman, S. (2018). Improving hip-worn accelerometer estimates of sitting using machine learning methods. Medicine & Science in Sports & Exercise, 50(7), 15181524. PubMed ID: 29443824 doi:10.1249/MSS.0000000000001578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., Barry, V.W., & Kang, M. (2015). Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Measurement in Physical Education and Exercise Science, 19(3), 125137. doi:10.1080/1091367X.2015.1054390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., & Freedson, P. (2011). Validation of wearable monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise, 43(8), 15611567. PubMed ID: 21233777 doi:10.1249/MSS.0b013e31820ce174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizell, D. (2003, October 21–23). Using gravity to estimate accelerometer orientation. Paper presented at the Proceedings of the 7th IEEE International Symposium on Wearable Computers, White Plains, NY.

    • Search Google Scholar
    • Export Citation
  • Pavey, T.G., Gilson, N.D., Gomersall, S.R., Clark, B., & Trost, S.G. (2017). Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. Journal of Science and Medicine in Sport, 20(1), 7580. PubMed ID: 27372275 doi:10.1016/j.jsams.2016.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, J.E., Hickey, A.M., Staudenmayer, J.W., John, D., Kent, J.A., & Freedson, P.S. (2016). Performance of activity classification algorithms in free-living older adults. Medicine & Science in Sports & Exercise, 48(5), 941950. PubMed ID: 26673129 doi:10.1249/MSS.0000000000000844

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, N., Kukkonen-Harjula, K.T., Verbeek, J.H., Ijaz, S., Hermans, V., & Bhaumik, S. (2016). Workplace interventions for reducing sitting at work. Cochrane Database of Systematic Reviews, 3(3), CD010912. PubMed ID: 26984326 doi:10.1002/14651858.cd010912.pub3

    • Search Google Scholar
    • Export Citation
  • Skotte, J., Korshøj, M., Kristiansen, J., Hanisch, C., & Holtermann, A. (2014). Detection of physical activity types using triaxial accelerometers. Journal of Physical Activity and Health, 11(1), 7684. PubMed ID: 23249722 doi:10.1123/jpah.2011-0347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeves, J.A., Bowles, H.R., McClain, J.J., Dodd, K.W., Brychta, R.J., Wang, J., & Chen, K.Y. (2015). Ability of thigh-worn ActiGraph and activPAL monitors to classify posture and motion. Medicine & Science in Sports & Exercise, 47(5), 952959. PubMed ID: 25202847 doi:10.1249/MSS.0000000000000497

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stemland, I., Ingebrigtsen, J., Christiansen, C.S., Jensen, B.R., Hanisch, C., Skotte, J., & Holtermann, A. (2015). Validity of the Acti4 method for detection of physical activity types in free-living settings: Comparison with video analysis. Ergonomics, 58(6), 953965. PubMed ID: 25588819 doi:10.1080/00140139.2014.998724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijndaele, K., Westgate, K., Stephens, S.K., Blair, S.N., Bull, F.C., Chastin, S.F.M., … Healy, G.N. (2015). Utilization and harmonization of adult accelerometry data: Review and expert consensus. Medicine & Science in Sports & Exercise, 47(10), 21292139. PubMed ID: 25785929 doi:10.1249/MSS.0000000000000661

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 114 114 59
Full Text Views 5 5 0
PDF Downloads 0 0 0