Sequential Activity Patterns and Outcome-Specific, Real-Time, and Target Group-Specific Feedback: The SPORT Algorithm

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Maastricht University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Purpose: Physical activity (PA) is crucial for health, but there is insufficient evidence about PA patterns and their operationalization. The authors developed two algorithms (SPORTconstant and SPORTlinear) to quantify PA patterns and check whether pattern information yields additional explained variance (compared with a compositional data approach [CoDA]). Methods: To measure PA, 397 (218 females) adolescents with a mean age of 12.4 (SD = 0.6) years wore an ActiGraph on their lower back for 1 week. The SPORT algorithms are based on a running value, each day starting with 0 and minutely adapting depending on the behavior being performed. The authors used linear regression models with a behavior-dependent constant (SPORTconstant) and a function of time-in-bout (SPORTlinear) as predictors and body mass index z scores (BMIz) and fat mass percentages (%FM) as exemplary outcomes. For generalizability, the models were validated using five-fold cross-validation where data were split up in five groups, and each of them was a test data set in one of five iterations. Results: The CoDA and the SPORTconstant models explained low variance in BMIz (2% and 1%) and low to moderate variance in %FM (both 5%). The variance being explained by the SPORTlinear models was 6% (BMIz) and 9% (%FM), which was significantly more than the CoDA models (p < .001) according to likelihood ratio tests. Conclusion: Among this group of adolescents, SPORTlinear explained more variance of BMIz and %FM than CoDA. These results suggest a way to enable research about PA patterns. Future research should apply the SPORTlinear algorithm in other target groups and with other health outcomes.

Berninger and ten Hoor are with the Department of Work and Social Psychology, Maastricht University, Maastricht, The Netherlands. Plasqui is with the Department of Human Biology and Movement Sciences, Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands. Crutzen is with the Department of Health Promotion, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands.

ten Hoor (Gill.tenhoor@maastrichtuniversity.nl) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 5 MB)
  • Aadland, E., Kvalheim, O.M., Anderssen, S.A., Resaland, G.K., & Andersen, L.B. (2018). The multivariate physical activity signature associated with metabolic health in children. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 77. doi:10.1186/s12966-018-0707-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aadland, E., Kvalheim, O.M., Anderssen, S.A., Resaland, G.K., & Andersen, L.B. (2019). Multicollinear physical activity accelerometry data and associations to cardiometabolic health: Challenges, pitfalls, and potential solutions. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 74. doi:10.1186/s12966-019-0836-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139160.

    • Search Google Scholar
    • Export Citation
  • Atkin, A.J., Gorely, T., Clemes, S.A., Yates, T., Edwardson, C., Brage, S., … Biddle, S.J. (2012). Methods of measurement in epidemiology: Sedentary behaviour. International Journal of Epidemiology, 41(5), 14601471. PubMed ID: 23045206 doi:10.1093/ije/dys118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, D.P., Charman, S.J., Ploetz, T., Savory, L.A., & Kerr, C.J. (2017). Associations between prolonged sedentary time and breaks in sedentary time with cardiometabolic risk in 10–14-year-old children: The HAPPY study. Journal of Sports Sciences, 35(22), 21642171. PubMed ID: 27892780 doi:10.1080/02640414.2016.1260150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banda, J.A., Haydel, K.F., Davila, T., Desai, M., Bryson, S., Haskell, W.L., … Robinson, T.N. (2016). Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One, 11(3), e0150534. PubMed ID: 26938240 doi:10.1371/journal.pone.0150534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berninger, N.M., Ten Hoor, G.A., & Plasqui, G. (2018). Validation of the vitabit sit–stand tracker: Detecting sitting, standing, and activity patterns. Sensors, 18(3), 877. doi:10.3390/s18030877

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biddle, S.J., Bengoechea, E.G., & Wiesner, G. (2017). Sedentary behaviour and adiposity in youth: A systematic review of reviews and analysis of causality. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 43. doi:10.1186/s12966-017-0497-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogin, B., & Varela-Silva, M. (2012). The body mass index: The good, the bad, and the horrid. Bulletin de la societe Suisse d’Anthropologie, 18(2), 511.

    • Search Google Scholar
    • Export Citation
  • Carson, V., Hunter, S., Kuzik, N., Gray, C.E., Poitras, V.J., Chaput, J.-P., … Tremblay, M.S. (2016). Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Applied Physiology, Nutrition, and Metabolism, 41(6), S240S265. doi:10.1139/apnm-2015-0630

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, V., Tremblay, M.S., Chaput, J.-P., McGregor, D., & Chastin, S. (2019). Compositional analyses of the associations between sedentary time, different intensities of physical activity, and cardiometabolic biomarkers among children and youth from the United States. PLoS One, 14(7), e0220009. PubMed ID: 31329609 doi:10.1371/journal.pone.0220009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention (CDC), N.C.f.H.S.N., and US Department of Health and Human Services. (2006). NHANES: Body composition procedures manual. Retrieved from http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/BC.pdf

    • Search Google Scholar
    • Export Citation
  • Chastin, S.F., Egerton, T., Leask, C., & Stamatakis, E. (2015). Meta‐analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity, 23(9), 18001810. PubMed ID: 26308477 doi:10.1002/oby.21180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F., Palarea-Albaladejo, J., Dontje, M.L., & Skelton, D.A. (2015). Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS One, 10(10), e0139984. PubMed ID: 26461112 doi:10.1371/journal.pone.0139984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chinapaw, M.J.M., de Niet, M., Verloigne, M., De Bourdeaudhuij, I., Brug, J., & Altenburg, T.M. (2014). From sedentary time to sedentary patterns: Accelerometer data reduction decisions in youth. PLoS One, 9(11), e111205. PubMed ID: 25369021 doi:10.1371/journal.pone.0111205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Ward, S.C., Schnelle, J.F., & Buchowski, M.S. (2012). Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Medicine & Science in Sports & Exercise, 44(10), 2009. PubMed ID: 22525772 doi:10.1249/MSS.0b013e318258cb36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Duvivier, B.M.F.M., Schaper, N.C., Bremers, M.A., Van Crombrugge, G., Menheere, P.P.C.A., Kars, M., & Savelberg, H.H.C.M. (2013). Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS One, 8(2), e55542. PubMed ID: 23418444 doi:10.1371/journal.pone.0055542

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvivier, B.M.F.M., Schaper, N.C., Hesselink, M.K.C., van Kan, L., Stienen, N., Winkens, B., … Savelberg, H.H.C.M. (2017). Breaking sitting with light activities vs structured exercise: A randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes. Diabetologia, 60(3), 490498. PubMed ID: 27904925 doi:10.1007/s00125-016-4161-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekelund, U., Luan, J.a., Sherar, L.B., Esliger, D.W., Griew, P., Cooper, A., & International Children's Accelerometry Database Collaborators. (2012). Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA, 307(7), 704712. PubMed ID: 22337681 doi:10.1001/jama.2012.156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Catellier, D.J., Gill, K., Ondrak, K.S., & McMurray, R.G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 15571565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairclough, S.J., Dumuid, D., Taylor, S., Curry, W., McGrane, B., Stratton, G., … Olds, T. (2017). Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 64. doi:10.1186/s12966-017-0521-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fredriks, A.M., van Buuren, S., Wit, J.M., & Verloove-Vanhorick, S. (2000). Body index measurements in 1996–7 compared with 1980. Archives of Disease in Childhood, 82(2), 107112. PubMed ID: 10648362 doi:10.1136/adc.82.2.107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, B., Winkler, E.A., Sethi, P., Carson, V., Ridgers, N.D., Salmon, J., … Dunstan, D.W. (2015). Associations of low- and high-intensity light activity with cardiometabolic biomarkers. Medicine & Science in Sports & Exercise, 47(10), 20932101. PubMed ID: 25668400 doi:10.1249/MSS.0000000000000631

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M., & Rowe, D.A. (2015). Issues and challenges in sedentary behavior measurement. Measurement in Physical Education and Exercise Science, 19(3), 105115. doi:10.1080/1091367X.2015.1055566

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuncheva, L.I. (2014). Combining pattern classifiers: Methods and algorithms. Hoboken, New Jersey: John Wiley & Sons.

  • Kuzik, N., Carson, V., Andersen, L.B., Sardinha, L.B., Grøntved, A., Hansen, B.H., … Ekelund, U. (2017). Physical activity and sedentary time associations with metabolic health across weight statuses in children and adolescents. Obesity, 25(10), 17621769. PubMed ID: 28782888 doi:10.1002/oby.21952

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohman, T.G. (1989). Assessment of body composition in children. Pediatric Exercise Science, 1(1), 1930. doi:10.1123/pes.1.1.19

  • Loudon, D., & Granat, M.H. (2015). Visualization of sedentary behavior using an event-based approach. Measurement in Physical Education and Exercise Science, 19(3), 148157. doi:10.1080/1091367X.2015.1048342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahalanobis, P.C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 2, 49–55

    • Search Google Scholar
    • Export Citation
  • Palarea-Albaladejo, J., & Martín-Fernández, J. (2008). A modified EM alr-algorithm for replacing rounded zeros in compositional data sets. Computers & Geosciences, 34(8), 902917. doi:10.1016/j.cageo.2007.09.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palarea-Albaladejo, J., & Martín-Fernández, J.A. (2015). zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics and Intelligent Laboratory Systems, 143, 8596. doi:10.1016/j.chemolab.2015.02.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paraschiv-Ionescu, A., Mellone, S., Colpo, M., Bourke, A., Ihlen, E.A.F., Achkar, C.M.e., … Aminian, K. (2016). Patterns of human activity behavior: From data to information and clinical knowledge. Paper presented at the Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany. doi:10.1145/2968219.2968283

    • Search Google Scholar
    • Export Citation
  • Plasqui, G. (2017). Smart approaches for assessing free‐living energy expenditure following identification of types of physical activity. Obesity Reviews, 18, 5055. PubMed ID: 28164455 doi:10.1111/obr.12506

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plasqui, G., Bonomi, A., & Westerterp, K. (2013). Daily physical activity assessment with accelerometers: New insights and validation studies. Obesity Reviews, 14(6), 451462. PubMed ID: 23398786 doi:10.1111/obr.12021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, T.J., Klooster, J.R., & Kenefick, R.W. (2006). Two short, daily activity bouts vs. one long bout: Are health and fitness improvements similar over twelve and twenty-four weeks? Journal of Strength & Conditioning Research, 20(1), 130135. PubMed ID: 16506860 doi:10.1519/R-16394.1

    • Search Google Scholar
    • Export Citation
  • Rauner, A., Mess, F., & Woll, A. (2013). The relationship between physical activity, physical fitness and overweight in adolescents: A systematic review of studies published in or after 2000. BMC Pediatrics, 13(1), 19. doi:10.1186/1471-2431-13-19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, G., Tremblay, M.S., & Manuel, D.G. (2012). Can we make time for physical activity? Simulating effects of daily physical activity on mortality. Epidemiology Research International, 2012, 304937. doi:10.1155/2012/304937

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, J.R., Ortega, F.B., Martínez-Gómez, D., Labayen, I., Moreno, L.A., De Bourdeaudhuij, I., … Molnar, D. (2011). Objectively measured physical activity and sedentary time in European adolescents: The HELENA study. American Journal of Epidemiology, 174(2), 173184. PubMed ID: 21467152 doi:10.1093/aje/kwr068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeller, D.A., Ravussin, E., Schutz, Y., Acheson, K.J., Baertschi, P., & Jequier, E. (1986). Energy expenditure by doubly labeled water: Validation in humans and proposed calculation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 250(5), R823R830. doi:10.1152/ajpregu.1986.250.5.R823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speakman, J.R., & Selman, C. (2003). Physical activity and resting metabolic rate. Proceedings of the Nutrition Society, 62(3), 621634. doi:10.1079/PNS2003282

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talarico, R., & Janssen, I. (2018). Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. International Journal of Obesity, 42(8), 15081514. PubMed ID: 29568110 doi:10.1038/s41366-018-0053-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarp, J., Child, A., White, T., Westgate, K., Bugge, A., Grøntved, A., … Davey, R. (2018). Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents. International Journal of Obesity, 42(9), 16391650. PubMed ID: 30006582 doi:10.1038/s41366-018-0152-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ten Hoor, G.A., Kok, G., Rutten, G.M., Ruiter, R.A.C., Kremers, S.P.J., Schols, A.M.J.W., & Plasqui, G. (2016). The Dutch ‘Focus on Strength’ intervention study protocol: Programme design and production, implementation and evaluation plan. BMC Public Health, 16(1), 496. doi:10.1186/s12889-016-3150-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ten Hoor, G.A., Rutten, G.M., Van Breukelen, G.J.P., Kok, G., Ruiter, R.A.C., Meijer, K., … Schols, A.M.J.W. (2018). Strength exercises during physical education classes in secondary schools improve body composition: A cluster randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 92. doi:10.1186/s12966-018-0727-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toftager, M., Kristensen, P.L., Oliver, M., Duncan, S., Christiansen, L.B., Boyle, E., … Troelsen, J. (2013). Accelerometer data reduction in adolescents: Effects on sample retention and bias. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 140. doi:10.1186/1479-5868-10-140

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., Loprinzi, P.D., Senso, M., & Pfeiffer, K.A. (2009). Comparison of accelerometer cut-points for predicting physical activity intensity in youth . Medicine & Science in Sports & Exercise, 41(5), 173. doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Kooy, K., Leenen, R., Deurenberg, P., Seidell, J.C., Westerterp, K.R., & Hautvast, J. (1992). Changes in fat-free mass in obese subjects after weight loss: A comparison of body composition measures. International Journal of Obesity and Related Metabolic Disorders, 16(9), 675683. PubMed ID: 1328092

    • Search Google Scholar
    • Export Citation
  • Werneck, A.O., Silva, E.C., Bueno, M.R., Vignadelli, L.Z., Oyeyemi, A.L., Romanzini, C.L., … Romanzini, M. (2019). Association(s) between objectively measured sedentary behavior patterns and obesity among Brazilian adolescents. Pediatric Exercise Science, 31(1), 3741. PubMed ID: 30500315 doi:10.1123/pes.2018-0120

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerterp, K.R., Meijer, G.A., Saris, W., Soeters, P.B., Winants, Y., & ten Hoor, F. (1991). Physical activity and sleeping metabolic rate. Medicine & Science in Sports & Exercise, 23(2), 166170. PubMed ID: 2017012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerterp, K.R., Wouters, L., & van Marken Lichtenbelt, W.D. (1995). The Maastricht protocol for the measurement of body composition and energy expenditure with labeled water. Obesity Research, 3, 4957. PubMed ID: 7736290 doi:10.1002/j.1550-8528.1995.tb00007.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2010). Global recommendations on physical activity for health. Retrieved from https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf

    • Search Google Scholar
    • Export Citation
  • Yngve, A., Nilsson, A., Sjostrom, M., & Ekelund, U. (2003). Effect of monitor placement and of activity setting on the MTI accelerometer output. Medicine & Science in Sports & Exercise, 35(2), 320326. PubMed ID: 12569223 doi:10.1249/01.MSS.0000048829.75758.A0

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 126
PDF Downloads 20 20 20