Comparing Counts of Park Users With a Wearable Video Device and an Unmanned Aerial System

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 University of Delaware
  • | 2 A.I. Whoo
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Evidence suggests that video captured with a wearable video device (WVD) may augment or supplant traditional methods for assessing park use. Unmanned aerial systems (UASs) are used to assess human activity, but research employing them for park assessments is sparse. Therefore, this study compared park user counts between a WVD and UAS. A diverse set of 33 amenities (e.g., playground) in three parks were videoed simultaneously by one researcher wearing a WVD and another operating the UAS. Assessments were done at 12 p.m. and 7 p.m. on weekends, with one park evaluated on two occasions 7 days apart. Two investigators independently reviewed videos and reached consensus on the counts of individuals at each amenity. Intraclass correlation coefficients (ICCs) were used to determine intra- and interrater reliabilities. A total of 404 (M = 4.7; SD = 9.6) and 389 (M = 4.5; SD = 9.0) individuals were counted in the UAS and WVD videos, respectively. Absolute agreement was 86% (74/86) and 100% when no individuals were using the amenity. Whether using all 86 videos or only videos having people (48 videos), ICCs indicated excellent reliability (ICC = .99; p < .001). The totals seen for the repeated measures were UAS = 146 and WVD = 136 for Day 1 and UAS = 169 and WVD = 161 for Day 2. Intrarater reliability was excellent for the UAS (ICC = .92; p < .001) and good for the WVD (ICC = .89; p < .001). Disagreement was mainly due to obstructions—people behind or under structures. This study provides support for the use of UASs for counting park users and future research examining the potential benefits of video analysis for assessing park use.

Suminski and Dominick are with the Center for Innovative Health Research, Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA. Saponaro is with A.I. Whoo, Newark, DE, USA.

Suminski (suminski@udel.edu) is corresponding author.
  • Averett, N. (2014). Drones take off as wildlife conservation tool. Auduban. Retrieved from http://www.audubon.org/magazine/july-august-2014/drones-take-wildlife-conservation-tool

    • Search Google Scholar
    • Export Citation
  • Bancroft, C., Joshi, S., Rundle, A., Hutson, M., Chong, C., Weiss, C.C., … Lovasi, G. (2015). Association of proximity and density of parks and objectively measured physical activity in the United States: A systematic review. Social Science & Medicine, 138, 2230. PubMed ID: 26043433 doi:10.1016/j.socscimed.2015.05.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, P.K., Smith, W.R., Moore, R.C., Floyd, M.F., Bocarro, J.N., Cosco, N.G., & Danninger, T.M. (2014). Park use among youth and adults: Examination of individual, social, and urban form factors. Environment and Behavior, 46(6), 768800. doi:10.1177/0013916512470134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedimo-Rung, A.L., Mowen, A.J., & Cohen, D.A. (2005). The significance of parks to physical activity and public health: A conceptual model. American Journal of Preventive Medicine, 28(2), 159168. PubMed ID: 15694524 doi:10.1016/j.amepre.2004.10.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bland, J.M., & Altman, D.G. (1986). Statistical method for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bland, J.M., & Altman, D.G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8(2), 135160. PubMed ID: 10501650 doi:10.1177/096228029900800204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, J.A., Hipp, J.A., Kerr, J., Horowtz, T.S., & Berrigan, D. (2018). Unique views on obesity-related behaviors and environments: Research using still and video images. Journal for the Measurement of Physical Behavior, 1(3), 143154. doi:10.1123/jmpb.2018-0021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, J.A., Liu, B., Sallis, J.F., Hipp, J.A., Staggs, V.S., Kerr, J., … Vasconcelos, N.M. (2020). Automated high-frequency observations of physical activity using computer vision. Medicine & Science in Sports & Exercise, 52(9), 20292036. PubMed ID: 32175976 doi:10.1249/MSS.0000000000002341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, S., Fulton, J., Pratt, M., Yang, Z., & Adams, E. (2015). Inadequate physical activity and health care expenditures in the United States. Progress in Cardiovascular Diseases, 57(4), 315323. PubMed ID: 25559060 doi:10.1016/j.pcad.2014.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Center for City Park Excellence, The Trust for Public Land. (2015). 2015 City Park facts. Retrieved from https://www.tpl.org/sites/default/files/files_upload/2015-City-Park-Facts-Report.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2010). Guide to community preventive services, promoting physical activity: Environmental and policy approaches. Retrieved from www.thecommunityguide.org/pa/environmental-policy/index.html

    • Search Google Scholar
    • Export Citation
  • Cohen, D.A., Han, B., Isacoff, J., Shulaker, B., Williamson, S., Marsh, T., … Bhatia, R. (2015). Impact of park renovations on park use and park-based physical activity. Journal of Physical Activity and Health, 12(2), 289295. PubMed ID: 24956608 doi:10.1123/jpah.2013-0165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, D.A., Han, B., Marsh, T., Williamson, S., Evenson, K.R., Nagel, C., … Harnik, P. (2017). The prevalence and use of walking loops in neighborhood parks: A national study. Environmental Health Perspectives, 125(2), 170174. PubMed ID: 27517530 doi:10.1289/EHP293

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drones etc. (2015). What is the difference between a drone and an RC plane or helicopter? Retrieved from https://www.dronesetc.com/blogs/news/21481409-what-is-the-difference-between-a-drone-and-an-rc-plane-or-helicopter

    • Search Google Scholar
    • Export Citation
  • Estabrooks, P.A., Lee, R.E., & Gyurcsik, N.C. (2003). Resources for physical activity participation: Does availability and accessibility differ by neighborhood socioeconomic status? Annals of Behavioral Medicine, 25(2), 100104. PubMed ID: 12704011 doi:10.1207/S15324796ABM2502_05

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Jones, S.A., Holliday, K.M., Cohen, D.A., & McKenzie, T.L. (2016). Park characteristics, use, and physical activity: A review of studies using SOPARC (System for Observing Play and Recreation in Communities). Preventive Medicine, 86, 153166. PubMed ID: 26946365 doi:10.1016/j.ypmed.2016.02.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fair, M.L., Kaczynski, A.T., Hughey, S.M., Besenyi, G.M., & Powers, A.R. (2017). An initiative to facilitate park usage, discovery, and physical activity among children and adolescents in Greenville County, South Carolina, 2014. Preventing Chronic Disease, 14, E14. PubMed ID: 28182864 doi:10.5888/pcd14.160043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Floyd, M.F., Bocarro, J.N., Smith, W.R., Baran, P.K., Moore, R.C., Cosco, N.G., … Fang, K. (2011). Park-based physical activity among children and adolescents. American Journal of Preventive Medicine, 41(3), 258265. PubMed ID: 21855739 doi:10.1016/j.amepre.2011.04.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Floyd, M.F., Taylor, W.C., & Whitt-Glover, M. (2009). Measurement of park and recreation environments that support physical activity in low-income communities of color: Highlights of challenges and recommendations. American Journal of Preventive Medicine, 36(4), S156S160. PubMed ID:19285207 doi:10.1016/j.amepre.2009.01.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubesic, T.H., Wallace, D., Chamberlain, A.W., & Nelson, J.R. (2018). Using unmanned aerial systems (UAS) for remotely sensing physical disorder in neighborhoods. Land Urban Plan, 169, 148159. doi:10.1016/j.landurbplan.2017.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healthy People 2020. (2017). Topics and objectives, physical activity. Office of Disease Prevention and Health Promotion. Retrieved from https://www.healthypeople.gov/2020/topics-objectives/topic/physical-activity/objectives

    • Search Google Scholar
    • Export Citation
  • Joseph, R.P., & Maddock, J.E. (2016). Observational Park-based physical activity studies: A systematic review of the literature. Preventive Medicine, 89, 257277. PubMed ID: 27311337 doi:10.1016/j.ypmed.2016.06.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaczynski, A.T., Hughey, S.M., Wilcox, S., Schipperijn, J., Hipp, J.A., Besenyi, G.M., … Wilcox, S. (2016). ParkIndex: Development of a standardized metric of park access for research and planning. Preventive Medicine, 87, 110114. PubMed ID: 26868092 doi:10.1016/j.ypmed.2016.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquet, O., Hipp, J.A., Alberico, C., Huang, J.-H., Fry, D., Mazak, E., … Floyd, MF. (2019). Use of SOPARC to assess physical activity in parks: Do race/ethnicity, contextual conditions, and settings of the target area, affect reliability? BMC Public Health, 19(1), 1730. PubMed ID: 31870351 doi:10.1186/s12889-019-8107-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenzie, T.L. (2016). Context matters: Systematic observation of place-based physical activity. Research Quarterly for Exercise and Sport, 87(4), 334341. PubMed ID: 27749158 doi:10.1080/02701367.2016.1234302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenzie, T.L., Cohen, D.A., Sehgal, A., Williamson, S., & Golinelli, D. (2006). System for observing play and leisure activity in communities (SOPARC): Reliability and feasibility measures. Journal of Physical Activity and Health, 3(Suppl. 1), S208S222. PubMed ID: 28834508 doi:10.1123/jpah.3.s1.s208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Center for Health Statistics. (2016). Health, United States, 2015: With special feature on racial and ethnic health disparities. Hyattsville, MD: Author. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK367640/pdf/Bookshelf_NBK367640.pdf

    • Search Google Scholar
    • Export Citation
  • National Physical Activity Plan. (2016). The 2016 United States report card on physical activity for children and youth. Columbia, SC: Author. Retrieved from http://www.physicalactivityplan.org/reportcard/2016FINAL_USReportCard.pdf

    • Search Google Scholar
    • Export Citation
  • Park, K., & Ewing, R. (2017). The usability of unmanned aerial vehicles (UASs) for measuring park-based physical activity. Landscape and Urban Planning, 167, 157164. doi:10.1016/j.landurbplan.2017.06.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K., & Ewing, R. (2018). The usability of unmanned aerial vehicles (UASs) for pedestrian observation. Journal of Planning Education and Research, 112. doi:10.1177/0739456X18805154

    • Search Google Scholar
    • Export Citation
  • Portney, L.G., & Watkins, M.P. (2000). Foundations of clinical research: Applications to practice. Upper Saddle River, NJ: Prentice Hall.

    • Search Google Scholar
    • Export Citation
  • Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI. doi:10.1109/CVPR.2017.690

    • Search Google Scholar
    • Export Citation
  • Resnik, D.B., & Elliott, K.C. (2019). Using drones to study human beings: Ethical and regulatory issues. Science and Engineering Ethics, 25(3), 707718. PubMed ID: 29488061 doi:10.1007/s11948-018-0032-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallis, J.F., Spoon, C., Cavill, N., Engelberg, J.K., Gebel, K., Parker, M., … Ding, D. (2015). Co-benefits of designing communities for active living: an exploration of literature. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 30. PubMed ID: 25886356 doi:10.1186/s12966-015-0188-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvo, G., Caruso, L., & Scordo, A. (2014). Urban traffic analysis through an UAS. The Procedia—Social and Behavioral Sciences, 111, 10831091. doi:10.1016/j.sbspro.2014.01.143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, M.P., David, M., Mota, J., Rech, C.R., Alberico, C.O., Fermino, R.C., … Jorge, M. (2016). Utility and reliability of an app for the system for observing play and recreation in communities (iSOPARC®). Measurement in Physical Education and Exercise Science, 20(2), 9398. doi:10.1080/1091367X.2015.1120733

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrout, P.E., & Fleiss, J.L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420428. PubMed ID: 18839484 doi:10.1037/0033-2909.86.2.420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, S., Pugach, O., Lin, W., & Bontu, A. (2016). If you build it will they come? Does involving community groups in playground renovations affect park utilization and physical activity? Environment and Behavior, 48(1), 246265. doi:10.1177/0013916515614368

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suminski, R.R., Dominick, G.M., & Plautz, E. (2019). Validation of the block walk method for assessing physical activity occurring on sidewalks/streets. International Journal of Environmental Research and Public Health, 16(11), 1927. PubMed ID: 31159164 doi:10.3390/ijerph16111927

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suminski, R.R., Dominick, G.M., Saponaro, P., Orsega-Smith, E.M., Plautz, E., & Sapanaro, M. (2020). High-tech video capture and analysis for providing counts of park users. Journal for the Measurement of Physical Behaviour, 3(2), 147156. doi:10.1123/jmpb.2019-0058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutheerakul, C., Kronprasert, N., Kaewmoracharoen, M., & Pichayapan, P. (2017). Application of unmanned aerial vehicles to pedestrian traffic monitoring and management for shopping streets. Transportation Research Procedia, 25, 17171734. doi:10.1016/j.trpro.2017.05.131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Task Force on Community Preventive Services. (2002). Recommendations to increase physical activity in communities. American Journal of Preventive Medicine, 22(4), 6772. doi:10.1016/S0749-3797(02)00433-6

    • Search Google Scholar
    • Export Citation
  • Van, C.J., Deforche, B., Van, C.J., Cerin, E., Timperio, A., Salmon, J., … Smith, M.W. (2017). Is the association between park proximity and recreational physical activity among mid-older aged adults moderated by park quality and neighborhood conditions? International Journal of Environmental Research and Public Health, 14(2), 192. PubMed ID: 28216609 doi:10.3390/ijerph14020192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veitch, J., Carver, A., Abbott, G., Giles-Corti, B., Timperio, A., & Salmon, J. (2015). How active are people in metropolitan parks? An observational study of park visitation in Australia. BMC Public Health, 15(1), 68. PubMed ID: 26141112 doi:10.1186/s12889-015-1960-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., & Beydoun, M.A. (2007). The obesity epidemic in the united states-gender, age, socioeconomic, racial/ethnic, and geographic characteristics: A systematic review and meta-regression analysis. Epidemiologic Reviews, 29(1), 628. PubMed ID: 17510091 doi:10.1093/epirev/mxm007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, B., Clarke, T., Nugent, C., & Schiller, J. (2015). Early release of selected estimates based on data from the 2015 national health interview survey. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics. Retrieved from https://www.cdc.gov/nchs/data/nhis/earlyrelease/earlyrelease201605.pdf

    • Search Google Scholar
    • Export Citation
  • Yeom, S., & Cho, I.-J. (2019). Detection and tracking of moving pedestrians with a small unmanned aerial vehicle. Applied Sciences, 9(16), 3359. doi:10.3390/app9163359

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 98 98 26
Full Text Views 8 8 3
PDF Downloads 2 2 1