Is the Polar M430 a Valid Tool for Estimating Maximal Oxygen Consumption in Adult Females?

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Boise State University
  • | 2 Hope College
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $39.00

1 year online subscription

USD  $52.00

Student 2 year online subscription

USD  $74.00

2 year online subscription

USD  $99.00

Background: Previous research studies have found that heart rate monitors that predict maximal oxygen consumption (V˙O2max) are valid for males but overestimate V˙O2max in females. Inaccurate self-reported physical activity (PA) levels may affect the validity of the prediction algorithm used to predict V˙O2max. Purpose: To investigate the validity of the Polar M430 in predicting V˙O2max among females with varying PA levels. Methods: Polar M430 was used to predict V˙O2max (pV˙O2max) for 43 healthy female study participants (26.9 ± 1.3 years), under three conditions: the participant’s self-selected PA category (sPA), one PA category below the sPA (sPA − 1), and one category above the sPA (sPA + 1). Indirect calorimetry was utilized to measure V˙O2max (mV˙O2max) via a modified Astrand treadmill protocol. Repeated-measures analyses of covariance using age and percentage of body fat as covariates were used to detect differences between groups. Bland–Altman plots were used to assess the precision of the measurement. Results: pV˙O2max was significantly correlated with mV˙O2max (r = .695, p < .001). The mean values for pV˙O2max and mV˙O2max were 44.58 ± 9.29 and 43.98 ± 8.76, respectively. No significant differences were found between mV˙O2max, pV˙O2max, sPA – 1, and sPA + 1 (p = .492). However, the Bland–Altman plots indicated a low level of precision with the estimate. Conclusions: The Polar M430 was a valid method to predict V˙O2max across different sPA levels in females. Moreover, an under/overestimation in sPA had little effect on the predicted V˙O2max.

Miller, Kempf, and Conger are with Boise State University, Boise, ID, USA. Rider is with Hope College, Holland, MI, USA.

Conger (scottconger@boisestate.edu) is the corresponding author.
  • American College of Sports Medicine. (2018). Guidelines for exercise testing and prescription (10th ed.). Philadelphia, PA: Wolters Kluwer Health.

    • Search Google Scholar
    • Export Citation
  • Astrand, P.O., & Rodale, K. (1970). Textbook of work physiology. New York, N.Y.: McGraw-Hill Book Co.

  • Cooper, K.D., & Shafer, A.B. (2019). Validity and reliability of the polar A300’s fitness test feature to predict VO2max. International Journal of Exercise Science, 12(4), 393. PubMed ID: 30899351

    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Albright, C., & Bassett, D.R. (2004). Accuracy of polar S410 heart rate monitor to estimate energy cost of exercise. Medicine & Science in Sports & Exercise, 36(8), 14331439. PubMed ID: 15292754 doi:10.1249/01.MSS.0000135794.01507.48

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esco, M.R., Mugu, E.M., Williford, H.N., McHugh, A.N., & Bloomquist, B.E. (2011). Cross-validation of the polar fitness test via the polar F11 heart rate monitor in predicting VO2max. Journal of Exercise Physiology Online, 14(5), 3137.

    • Search Google Scholar
    • Export Citation
  • Esco, M.R., Snarr, R.L., & Williford, H.N. (2014). Monitoring changes in VO2max via the polar FT40 in female collegiate soccer players. Journal of Sports Sciences, 32(11), 10841090. PubMed ID: 24506090 doi:10.1080/02640414.2013.879672

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogelholm, M.I., Malmberg, J.A., Suni, J., Santtila, M.A., Kyröläinen, H., Mäntysaari, M., & Oja, P. (2006). International physical activity questionnaire: Validity against fitness. Medicine & Science in Sports & Exercise, 38(4), 753760. PubMed ID: 16679993 doi:10.1249/01.mss.0000194075.16960.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, J., Stone, W., & Burkett, L. (1997). Non-exercise VO2max estimation for physically active college students. Medicine & Science in Sports & Exercise, 29(3), 415423. PubMed ID: 9139183 doi:10.1097/00005768-199703000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, J.D., Paul, S.L., Hyde, A., Bradshaw, D.I., Vehrs, P.R., Hager, R.L., & Yanowitz, F.G. (2009). Prediction of maximum oxygen uptake using both exercise and non-exercise data. Measurement in Physical Education and Exercise Science, 13(1), 112. doi:10.1080/10913670802609086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heil, D.P., Freedson, P.S., Ahlquist, L.E., Price, J., & Rippe, J.M. (1995). Nonexercise regression models to estimate peak oxygen consumption. Medicine & Science in Sports & Exercise, 27(4), 599606. PubMed ID: 7791593

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, J.F., Stergiou, P., Fung, T.S., & Katz, L. (2017). Comparison of Polar M600 optical heart rate and ECG heart rate during exercise. Medicine & Science in Sports & Exercise, 49(12), 26002607. PubMed ID: 29135785 doi:10.1249/MSS.0000000000001388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howley, E.T., Bassett, D.R., & Welch, H.G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine & Science in Sports & Exercise, 27(9), 12921301. PubMed ID: 8531628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, A.S., Blair, S.N., Mahar, M.T., Wier, L.T., Ross, R.M., & Stuteville, J.E. (1990). Prediction of functional aerobic capacity without exercise testing. Medicine & Science in Sports & Exercise, 22(6), 86370. PubMed ID: 2287267 doi:10.1249/00005768-199012000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klesges, R.C., Eck, L.H., Mellon, M.W., Fulliton, W., Somes, G.W., & Hanson, C.L. (1990).The accuracy of self-reports of physical activity. Medicine & Science in Sports & Exercise, 22(5), 690697. PubMed ID: 2233209 doi:10.1249/00005768-199010000-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraft, G.L., & Dow, M. (2018). Validation of the polar fitness test. International Journal for Innovation Education and Research, 6(1), 2734. doi:10.31686/ijier.vol6.iss1.893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakens, D., Scheel, A.M., & Isager, P.M. (2018). Equivalence testing for psychological research: A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259269. doi:10.1177/2515245918770963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, A.L., Lloyd, L.K., Miller, B.K., McCurdy, K.W., & Pope, M.L. (2010). Accuracy of Polar F6 in estimating the energy cost of aerobic dance bench stepping in college-age females. Journal of Sports Medicine and Physical Fitness, 50(4), 385.

    • Search Google Scholar
    • Export Citation
  • Norman, G.R., Sloan, J.A., & Wyrwich, K.W. (2003). Interpretation of changes in health-related quality of life: The remarkable universality of half a standard deviation. Medical Care, 41, 582592. PubMed ID: 12719681

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philips, C., Ziemba, Z., & Smith, B. (2016). Accuracy of Polar heart rate monitors to predict VO2max. Medicine & Science in Sports & Exercise, 48(5S), 436. doi:10.1249/01.mss.0000486313.95732.f1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polar Electro. (2021). Fitness test polar global. Retrieved from www.polar.com/en/smart_coaching/features/fitness_test Accessed April 8, 2020.

  • Powers, S.K., & Howley, E.T. (2009). Exercise metabolism. In Exercise physiology. New York, NY: The McGraw-Hill Companies.

  • Rider, B.C., Conger, S.A., Ditzenberger, G.L., Besteman, S.S., Bouret, C.M., & Coughlin, A.M. (In Press). Examining the accuracy of the polar A360 monitor. The Journal of Strength & Conditioning Research. Epub ahead of print. doi:10.1519/JSC.0000000000003136

    • Search Google Scholar
    • Export Citation
  • Shryack, G., Patterson, J., Hanzel, O., Willoughby, C., & Smith, B. (2018). Accuracy of the polar M430 to predict VO2 using optical technology: 2762 board# 45 June 1 200 PM–330 PM. Medicine & Science in Sports & Exercise, 50(5S), 674. doi:10.1249/01.mss.0000538222.86529.2b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, N.C., Willoughby, C.A., & Smith, B.K. (2017). Accuracy of Garmin and Polar smart watches to predict VO2max. Medicine & Science in Sports & Exercise, 49(5S), 761. doi:10.1249/01.mss.0000519024.10358.0b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, H.L., Buskirk, E., & Henschel, A. (1955). Maximal oxygen intake as an objective measure of cardio-respiratory performance. Journal of Applied Physiology, 8(1), 7380. PubMed ID: 13242493 doi:10.1152/jappl.1955.8.1.73

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washburn, R.A., Jacobsen, D.J., Sonko, B.J., Hill, J.O., & Donnelly, J.E. (2003). The validity of the Stanford seven-day physical activity recall in young adults. Medicine & Science in Sports & Exercise, 35(8), 13741380. PubMed ID: 12900693 doi:10.1249/01.MSS.0000079081.08476.EA

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wier, L.T., Jackson, A.S., Ayers, G.W., & Arenare, B. (2006). Nonexercise models for estimating VO2max with waist girth, percent fat, or BMI. Medicine and Science in Sports and Exercise, 38(3), 555561. PubMed ID: 16540845 doi:10.1249/01.mss.0000193561.64152

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6 6 6
Full Text Views 50 50 50
PDF Downloads 30 30 30