Correlates of the Adherence to a 24-hr Wrist-Worn Accelerometer Protocol in a Sample of High School Students

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Federal University of Santa Catarina,
  • | 2 Federal University of Pelotas,
Restricted access

This study (a) compared accelerometer wear time and compliance between distinct wrist-worn accelerometer data collection plans, (b) analyzed participants’ perception of using accelerometers, and (c) identified sociodemographic and behavioral correlates of accelerometer compliance. A sample of high school students (n = 143) wore accelerometers attached to the wrist by a disposable polyvinyl chloride (PVC) wristband or a reusable fabric wristband for 24 hr over 6 days. Those who wore the reusable fabric band, but not their peers, were instructed to remove the device during water-based activities. Participants answered a questionnaire about sociodemographic and behavioral characteristics and reported their experience wearing the accelerometer. We computed non-wear time and checked participants’ compliance with wear-time criteria (i.e., at least three valid weekdays and one valid weekend day) considering two valid day definitions separately (i.e., at least 16 and 23 hours of accelerometer data). Participants who wore a disposable band had greater compliance compared with those who wore a reusable band for both 16-hr (93% vs. 76%, respectively) and 23-hr valid day definitions (91% vs. 50%, respectively). High schoolers with the following characteristics were less likely to comply with wear time criteria if they (a) engaged in labor-intensive activities, (b) perceived that wearing the monitor hindered their daily activities, or (c) felt ashamed while wearing the accelerometer. In conclusion, the data collection plan composed of using disposable wristbands and not removing the monitor resulted in greater 24-hr accelerometer wear time and compliance. However, a negative experience in using the accelerometer may be a barrier to high schoolers’ adherence to rigorous protocols.

Lopes, da Costa, Malheiros, Costa, Souza, and Silva are with the Federal University of Santa Catarina, Florianópolis, Brazil. Crochemore-Silva is with the  Federal University of Pelotas, Pelotas, Brazil.

Lopes (marcus.vinicius.veber.lopes@posgrad.ufsc.br) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 22 KB)
    • Supplementary Material 2 (PDF 14 KB)
    • Supplementary Material 3 (PDF 14 KB)
    • Supplementary Material 4 (PDF 17 KB)
    • Supplementary Material 5 (PDF 156 KB)
  • Audrey, S., Bell, S., Hughes, R., & Campbell, R. (2013). Adolescent perspectives on wearing accelerometers to measure physical activity in population-based trials. European Journal of Public Health, 23(3), 475480. https://doi.org/10.1093/eurpub/cks081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borgundvaag, E., McIsaac, M., Borghese, M.M., & Janssen, I. (2017). Imputing accelerometer nonwear time when assessing moderate to vigorous physical activity in children. Journal of Physical Activity & Health, 14(11), 852860. https://doi.org/10.1123/jpah.2016-0706

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchan, D.S., & McLellan, G. (2019). Comparing physical activity estimates in children from hip-worn Actigraph GT3X+ accelerometers using raw and counts based processing methods. Journal of Sports Sciences, 37(7), 779787. https://doi.org/10.1080/02640414.2018.1527198

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., Bernard, J.Y., Padmapriya, N., Yao, J., Goh, C., Tan, K.H., Yap, F., Chong, Y.S., Shek, L., Godfrey, K.M., Chan, S.Y., Eriksson, J.G., & Müller-Riemenschneider, F. (2019). Socio-demographic and maternal predictors of adherence to 24-hour movement guidelines in Singaporean children. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 111. https://doi.org/10.1186/s12966-019-0834-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, B.G.G., Barreto, P.S., da Silveira, P.M., da Silva, J.A., & Silva, K.S. (2020). The association between practicing sport and non-sport physical activities and health-related quality of life of Brazilian adolescents: A cross-sectional study. Science and Sports, 35(4), e109e119. https://doi.org/10.1016/j.scispo.2020.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, B.G.G., Lopes, M.V.V., Malheiros, L.E.A., Sasaki, J.E., & da Silva, K.S. (2019). Correlates of compliance with hip-worn accelerometer protocol in adolescents. Revista Brasileira de Atividade Física & Saúde, 24, 18. https://doi.org/10.12820/rbafs.24e0086

    • Search Google Scholar
    • Export Citation
  • Crocker, P.R.E., Holowachuk, D.R., & Kowalski, K.C. (2001). Feasibility of using the Tritrac motion sensor over a 7-day trial with older children. Pediatric Exercise Science, 13(1), 7081. https://doi.org/10.1123/pes.13.1.70

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Farias Júnior, J.C., Lopes, A.S., Mota, J., Santos, M.P., Ribeiro, J.C., & Hallal, P.C. (2012). Validade e reprodutibilidade de um questionário para medida de atividade física em adolescentes: Uma adaptação do Self-Administered Physical Activity Checklist. Revista Brasileira de Epidemiologia, 15(1), 198210. https://doi.org/10.1590/S1415-790X2012000100018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairclough, S.J., Noonan, R., Rowlands, A.V., Van Hees, V., Knowles, Z., & Boddy, L.M. (2016). Wear compliance and activity in children wearing wrist- and hip-mounted accelerometers. Medicine & Science in Sports & Exercise, 48(2), 245253. https://doi.org/10.1249/MSS.0000000000000771

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felden, É.P.G., Leite, C.R., Rebelatto, C.F., Andrade, R.D., & Beltrame, T.S. (2015). Sono em adolescentes de diferentes níveis socioeconômicos: Revisão sistemática. Revista Paulista de Pediatria, 33(4), 467473. https://doi.org/10.1016/j.rpped.2015.01.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grydeland, M., Bergh, I.H., Bjelland, M., Lien, N., Andersen, L.F., Ommundsen, Y., Klepp, K.I., & Anderssen, S.A. (2013). Intervention effects on physical activity: The HEIA study—A cluster randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 10(17), 1–13. https://doi.org/10.1186/1479-5868-10-17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthold, R., Stevens, G.A., Riley, L.M., & Bull, F.C. (2020). Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. The Lancet Child & Adolescent Health, 4(1), 2335. https://doi.org/10.1016/S2352-4642(19)30323-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfert, S., & Warschburger, P. (2013). The face of appearance-related social pressure: Gender, age and body mass variations in peer and parental pressure during adolescence. Child and Adolescent Psychiatry and Mental Health, 7(1), 16. https://doi.org/10.1186/1753-2000-7-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrmann, S.D., Barreira, T.V., Kang, M., & Ainsworth, B.E. (2014). Impact of accelerometer wear time on physical activity data: A NHANES semisimulation data approach. British Journal of Sports Medicine, 48(3), 278282. https://doi.org/10.1136/bjsports-2012-091410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D.C., & Crawford, J.K. (2006). The peer appearance culture during adolescence: Gender and body mass variations. Journal of Youth and Adolescence, 35(2), 257269. https://doi.org/10.1007/s10964-005-9006-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karas, M., Bai, J., Strączkiewicz, M., Harezlak, J., Glynn, N.W., Harris, T., Zipunnikov, V., Crainiceanu, C., & Urbanek, J.K. (2019). Accelerometry data in health research: Challenges and opportunities: Review and examples. Statistics in Biosciences, 11(2), 210237. https://doi.org/10.1007/s12561-018-9227-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirby, J., Tibbins, C., Callens, C., Lang, B., Thorogood, M., Tigbe, W., & Robertson, W. (2012). Young people’s views on accelerometer use in physical activity research: Findings from a user involvement investigation. ISRN Obesity, 2012, 17. https://doi.org/10.5402/2012/948504

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, A., Shiroma, E.J., Caserotti, P., Matthews, C.E., Chen, K.Y., Glynn, N.W., & Harris, T.B. (2016). Comparison of sedentary estimates between activPAL and Hip- and Wrist-Worn ActiGraph. Medicine & Science in Sports & Exercise, 48(8), 15141522. https://doi.org/10.1249/MSS.0000000000000924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D.A., Knowles, Z.R., Fairclough, S.J., & Graves, L.E.F. (2016). A protocol to encourage accelerometer wear in children and young people. Qualitative Research in Sport, Exercise and Health, 8(4), 319331. https://doi.org/10.1080/2159676X.2016.1160949

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLellan, G., Arthur, R., & Buchan, D.S. (2018). Wear compliance, sedentary behaviour and activity in free-living children from hip-and wrist-mounted ActiGraph GT3X+ accelerometers. Journal of Sports Sciences, 36(21), 24242430. https://doi.org/10.1080/02640414.2018.1461322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Tudor-Locke, C., Löf, M., Esteban-Cornejo, I., Molina-Garcia, P., Mora-Gonzalez, J., Rodriguez-Ayllon, M., Garcia-Marmol, E., Ekelund, U., & Ortega, F.B. (2019). Comparability of published cut-points for the assessment of physical activity: Implications for data harmonization. Scandinavian Journal of Medicine and Science in Sports, 29(4), 566574. https://doi.org/10.1111/sms.13356

    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Rowlands, A.V., Huber, F., Sabia, S., & van Hees, V.T. (2019). GGIR: A research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. Journal for the Measurement of Physical Behaviour, 2(3), 188196. https://doi.org/10.1123/jmpb.2018-0063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, A.Y., Caporaso, A., Davis, T., Dwyer, L.A., Nebeling, L.C., Liu, B., & Hennessy, E. (2021). Effect of incentive amount on U.S. adolescents’ participation in an accelerometer data collection component of a national survey. Field Methods, 33(3), 219235. https://doi.org/10.1177/1525822X21989841

    • Search Google Scholar
    • Export Citation
  • Pedišić, Ž., & Bauman, A. (2015). Accelerometer-based measures in physical activity surveillance: Current practices and issues. British Journal of Sports Medicine, 49(4), 219223. https://doi.org/10.1136/bjsports-2013-093407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedišić, Ž., Dumuid, D., & Olds, T.S. (2017). Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology, 49(2), 252269.

    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., Cliff, D.P., Fairclough, S.J., Boddy, L.M., Olds, T.S., Parfitt, G., Noonan, R.J., Downs, S.J., Knowles, Z.R., & Beets, M.W. (2016). Moving forward with backward compatibility: Translating wrist accelerometer data. Medicine & Science in Sports & Exercise, 48(11), 21422149. https://doi.org/10.1249/MSS.0000000000001015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., Harrington, D.M., Bodicoat, D.H., Davies, M.J., Sherar, L.B., Gorely, T., Khunti, K., & Edwardson, C.L. (2018). Compliance of adolescent girls to repeated deployments of wrist-worn accelerometers. Medicine & Science in Sports & Exercise, 50(7), 15081517. https://doi.org/10.1249/MSS.0000000000001588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, A.A., Domingues, M.R., Dahly, D.L., Meller, F.O., Gonçalves, H., Wehrmeister, F.C., & Assunção, M.C.F. (2016). Correlates of self-reported weekday sleep duration in adolescents: The 18-year follow-up of the 1993 Pelotas (Brazil) birth cohort study. Sleep Medicine, 23, 8188. https://doi.org/10.1016/j.sleep.2016.02.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, J.J., Rowlands, A.V., Cliff, D.P., Morgan, P.J., Plotnikoff, R.C., & Lubans, D.R. (2017). Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents. Journal of Science and Medicine in Sport, 20(12), 11011106. https://doi.org/10.1016/j.jsams.2017.04.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, K.S., Lopes, A.S., Hoefelmann, L.P., Cabral, L.G.A., De Bem, M.F.L., de Barros, M.V.G., & Nahas, M.V. (2013). Health risk behaviors project (COMPAC) in youth of the Santa Catarina State, Brazil: Ethics and methodological aspects. Revista Brasileira de Cineantropometria & Desempenho Humano, 15(1), 15. https://doi.org/10.5007/1980-0037.2013v15n1p1

    • Search Google Scholar
    • Export Citation
  • Toftager, M., Kristensen, P.L., Oliver, M., Duncan, S., Christiansen, L.B., Boyle, E., Brønd, J.C., & Troelsen, J. (2013). Accelerometer data reduction in adolescents: Effects on sample retention and bias. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 140. https://doi.org/10.1186/1479-5868-10-140

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Barreira, T.V, Schuna, J.M., Mire, E.F., Chaput, J.-P., Fogelholm, M., Hu, G., Kuriyan, R., Kurpad, A., Lambert, E.V, Maher, C., Maia, J., Matsudo, V., Olds, T., Onywera, V., Sarmiento, O.L., Standage, M., Tremblay, M.S., Zhao, P., . . . Group, I.R. (2015). Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). The International Journal of Behavioral Nutrition and Physical Activity, 12, 11. https://doi.org/10.1186/s12966-015-0172-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Hees, V.T., Fang, Z., Langford, J., Assah, F., Mohammad, A., Da Silva, I.C.M., Trenell, M.I., White, T., Wareham, N.J., & Brage, S. (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. Journal of Applied Physiology, 117(7), 738744. https://doi.org/10.1152/japplphysiol.00421.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V.T., Gorzelniak, L., Dean León, E.C., Eder, M., Pias, M., Taherian, S., Ekelund, U., Renström, F., Franks, P.W., Horsch, A., & Brage, S. (2013). Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS One, 8(4), e61691. https://doi.org/10.1371/journal.pone.0061691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, R. (2005). Kolmogorov–Smirnov test. Encyclopedia of Biostatistics. https://doi.org/10.1002/0470011815.b2a15064

All Time Past Year Past 30 Days
Abstract Views 1693 1693 348
Full Text Views 22 22 0
PDF Downloads 30 30 0