Impact of ActiGraph Sampling Rate and Intermonitor Comparability on Measures of Physical Activity in Adults

in Journal for the Measurement of Physical Behaviour

Click name to view affiliation

Kimberly A. ClevengerMichigan State University, East Lansing, MI, USA

Search for other papers by Kimberly A. Clevenger in
Current site
Google Scholar
PubMed
Close
*
,
Jan Christian BrøndDepartment of Exercise Epidemiology, Institut for Idræt og Biomekanik, Syddansk Universitet, Odense, Denmark

Search for other papers by Jan Christian Brønd in
Current site
Google Scholar
PubMed
Close
*
,
Daniel ArvidssonDepartment of Food and Nutrition and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Daniel Arvidsson in
Current site
Google Scholar
PubMed
Close
*
,
Alexander H.K. MontoyeDepartment of Integrative Physiology and Health Science, Alma College, Alma, MI, USA

Search for other papers by Alexander H.K. Montoye in
Current site
Google Scholar
PubMed
Close
*
,
Kelly A. MackintoshApplied Sports, Technology, Exercise, and Medicine (A-STEM) Research Centre, Department of Sports and Exercise Sciences, Swansea University, Swansea, United Kingdom

Search for other papers by Kelly A. Mackintosh in
Current site
Google Scholar
PubMed
Close
*
,
Melitta A. McNarryApplied Sports, Technology, Exercise, and Medicine (A-STEM) Research Centre, Department of Sports and Exercise Sciences, Swansea University, Swansea, United Kingdom

Search for other papers by Melitta A. McNarry in
Current site
Google Scholar
PubMed
Close
*
, and
Karin A. PfeifferMichigan State University, East Lansing, MI, USA

Search for other papers by Karin A. Pfeiffer in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: ActiGraph is a commonly used, research-grade accelerometer brand, but there is little information regarding intermonitor comparability of newer models. In addition, while sampling rate has been shown to influence accelerometer metrics, its influence on measures of free-living physical activity has not been directly studied. Purpose: To examine differences in physical activity metrics due to intermonitor variability and chosen sampling rate. Methods: Adults (n = 20) wore two hip-worn ActiGraph wGT3X-BT monitors for 1 week, with one accelerometer sampling at 30 Hz and the other at 100 Hz, which was downsampled to 30 Hz. Activity intensity was classified using vector magnitude, Euclidean Norm Minus One (ENMO), and mean amplitude deviation (MAD) cut points. Equivalence testing compared outcomes. Results: There was a lack of intermonitor equivalence for ENMO, time in sedentary/light- or moderate-intensity activity according to ENMO cut points, and time in moderate-intensity activity according to MAD cut points. Between sampling rates, differences existed for time in moderate-intensity activity according to vector magnitude, ENMO, and MAD cut points, and time in sedentary/light-intensity activity according to ENMO cut points. While mean differences were small (0.1–1.7 percentage points), this would equate to differences in moderate-to vigorous-intensity activity over a 10-hr wear day of 3.6 (MAD) to 10.8 (ENMO) min/day for intermonitor comparisons or 3.6 (vector magnitude) to 5.4 (ENMO) min/day for sampling rate. Conclusions: Epoch-level intermonitor differences were larger than differences due to sampling rate, but both may impact outcomes such as time spent in each activity intensity. ENMO was the least comparable metric between monitors or sampling rates.

Supplementary Materials

    • Supplementary Figure S1 (PDF 267 KB)
    • Supplementary Figure S2 (PDF 229 KB)
    • Supplementary Figure S3 (PDF 258 KB)
    • Supplementary Table S1 (PDF 269 KB)
    • Supplementary Table S2 (PDF 183 KB)
    • Supplementary Table S3 (PDF 183 KB)
  • Collapse
  • Expand
  • Aadland, E., & Ylvisåker, E. (2015). Reliability of the Actigraph GT3X+ accelerometer in adults under free-living conditions. PLoS One, 10(8), Article e0134606. https://doi.org/10.1371/journal.pone.0134606

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aittasalo, M., Vähä-Ypyä, H., Vasankari, T., Husu, P., Jussila, A.-M., & Sievänen, H. (2015). Mean amplitude deviation calculated from raw acceleration data: A novel method for classifying the intensity of adolescents’ physical activity irrespective of accelerometer brand. BMC Sports Science, Medicine and Rehabilitation, 7(1), 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakrania, K., Yates, T., Rowlands, A.V., Esliger, D.W., Bunnewell, S., Sanders, J., Davies, M., Khunti, K., & Edwardson, C.L. (2016). Intensity thresholds on raw acceleration data: Euclidean norm minus one (ENMO) and mean amplitude deviation (MAD) approaches. PLoS One, 11(10), Article e0164045. https://doi.org/10.1371/journal.pone.0164045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barone Gibbs, B., Brach, J.S., Byard, T., Creasy, S., Davis, K.K., McCoy, S., Peluso, A., Rogers, R. J., Rupp, K., & Jakicic, J.M. (2017). Reducing sedentary behavior versus increasing moderate-to-vigorous intensity physical activity in older adults: A 12-week randomized, clinical trial. Journal of Aging and Health, 29(2), 247267. https://doi.org/10.1177/0898264316635564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bland, J.M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., & Arvidsson, D. (2015). Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. Journal of Applied Physiology, 120(3), 362369. https://doi.org/10.1152/japplphysiol.00628.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, K.Y., & Bassett, D.R. (2005). The technology of accelerometry-based activity monitors: Current and future. Medicine and Science in Sports and Exercise, 37(11), S490. https://doi.org/10.1249/01.mss.0000185571.49104.82

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., Mackintosh, K.A., McNarry, M.A., Brønd, J.C., Arvidsson, D., & Montoye, A.H. (2019). Effect of sampling rate on acceleration and counts of hip-and wrist-worn ActiGraph accelerometers in children. Physiological Measurement. 40(9), Article 095008. https://doi.org/10.1088/1361-6579/ab444b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., & Montoye, A.H. (2020a). Cross-generational comparability of hip-and wrist-worn ActiGraph GT3X+, wGT3X-BT, and GT9X accelerometers during free-living in adults. Journal of Sports Sciences, 38(24), 27942802. https://doi.org/10.1080/02640414.2020.1801320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., & Montoye, A.H. (2020b). Cross-generational comparability of raw and count-based metrics from ActiGraph GT9X and wGT3X-BT accelerometers during free-living in youth. Measurement in Physical Education and Exercise Science, 24(3), 194204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Almeida Mendes, M., da Silva, I.C., Ramires, V.V., Reichert, F.F., Martins, R.C., & Tomasi, E. (2018). Calibration of raw accelerometer data to measure physical activity: A systematic review. Gait & Posture, 61, 98110. https://doi.org/10.1016/j.gaitpost.2017.12.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunlop, D.D., Song, J., Lee, J., Gilbert, A.L., Semanik, P.A., Ehrlich‐Jones, L., Pellegrini, C.A., Pinto, D., Ainsworth, B., & Chang, R.W. (2017). Physical activity minimum threshold predicting improved function in adults with lower‐extremity symptoms. Arthritis Care & Research, 69(4), 475483. https://doi.org/10.1002/acr.23181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esliger, D.W., & Tremblay, M.S. (2006). Technical reliability assessment of three accelerometer models in a mechanical setup. Medicine & Science in Sports & Exercise, 38(12), 21732181. https://doi.org/10.1249/01.mss.0000239394.55461.08

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamer, M., Lemon, J., Fellows, I., & Singh, P. (2012). irr: Various coefficients of interrater reliability and agreement. R package version 0.84. Retrieved from http://CRAN.R-project. org/package= irr

    • Search Google Scholar
    • Export Citation
  • Gaskin, C.J., Craike, M., Mohebbi, M., Salmon, J., Courneya, K.S., Broadbent, S., & Livingston, P.M. (2016). Associations of objectively measured moderate-to-vigorous physical activity and sedentary behavior with quality of life and psychological well-being in prostate cancer survivors. Cancer Causes & Control, 27(9), 10931103. https://doi.org/10.1007/s10552-016-0787-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibbing, P. (2018). AGread: Read data files from ActiGraph Monitors. Retrieved from https://cran.r-project.org/web/packages/AGread/AGread.pdf

    • Search Google Scholar
    • Export Citation
  • Hildebrand, M., Hees, V.T.V.A.N., Hansen, B.H., & Ekelund, U. (2014). Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Medicine & Science in Sports & Exercise, 46(9), 18161824. https://doi.org/10.1249/mss.0000000000000289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hur, S.A., Guler, S.A., Khalil, N., Camp, P.G., Guenette, J.A., Swigris, J.J., & Ryerson, C.J. (2019). Minimal important difference for physical activity and validity of the International Physical Activity Questionnaire in interstitial lung disease. Annals of the American Thoracic Society, 16(1), 107115. https://doi.org/10.1513/AnnalsATS.201804-265OC

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarrett, H., Fitzgerald, L., & Routen, A.C. (2015). Interinstrument reliability of the ActiGraph GT3X+ ambulatory activity monitor during free-living conditions in adults. Journal of Physical Activity and Health, 12(3), 382387. https://doi.org/10.1123/jpah.2013-0070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, D., & Freedson, P. (2012). ActiGraph and Actical physical activity monitors: A peek under the hood. Medicine & Science in Sports & Exercise, 44(1 , Suppl. 1), S86S89. https://doi.org/10.1249/MSS.0b013e3182399f5e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakens, D. (2017). TOSTER: Two one-sided tests (TOST) equivalence testing. R package version 0.2. 5. Retrieved from https://cran.r-project.org/web/packages/TOSTER/TOSTER.pdf.

    • Search Google Scholar
    • Export Citation
  • Lee, K.-Y., Macfarlane, D.J., & Cerin, E. (2013). Comparison of three models of actigraph accelerometers during free living and controlled laboratory conditions. European Journal of Sport Science, 13(3), 332339. https://doi.org/10.1080/17461391.2011.643925

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S.-H., Driban, J.B., Eaton, C.B., McAlindon, T.E., Harrold, L.R., & Lapane, K.L. (2016). Objectively measured physical activity and symptoms change in knee osteoarthritis. The American Journal of Medicine, 129(5), 497505.E1. https://doi.org/10.1016/j.amjmed.2015.12.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi, P.D., & Smith, B. (2017). Comparison between wrist-worn and waist-worn accelerometry. Journal of Physical Activity and Health, 14(7), 539545. https://doi.org/10.1123/jpah.2016-0211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., Fitzsimons, C., Jepson, R., Saunders, D.H., van der Ploeg, H.P., Teixeira, P.J., Gray, C.M., & Mutrie, N. (2015). Interventions with potential to reduce sedentary time in adults: Systematic review and meta-analysis. British Journal of Sports Medicine, 49(16), 10561063. https://doi.org/10.1136/bjsports-2014-094524

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McHugh, M.L. (2012). Interrater reliability: The Kappa statistic. Biochemia Medica, 22(3), 276282.

  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Nyström, C.D., Mora-Gonzalez, J., Löf, M., Labayen, I., Ruiz, J.R., & Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. https://doi.org/10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Rowlands, A.V., Henriksson, P., Shiroma, E.J., Acosta, F.M., Rodriguez-Ayllon, M., Esteban-Cornejo, I., Plaza-Florido, A., & Gil-Cosano, J.J. (2019). Comparability of accelerometer signal aggregation metrics across placements and dominant wrist cut points for the assessment of physical activity in adults. Scientific Reports, 9(1), Article 18235. https://doi.org/10.1038/s41598-019-54267-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Moore, R.W., Bowles, H.R., Korycinski, R., & Pfeiffer, K.A. (2016). Reporting accelerometer methods in physical activity intervention studies: A systematic review and recommendations for authors. British Journal of Sports Medicine, 52(23), 15071516. https://doi.org/10.1136/bjsports-2015-095947

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Nelson, M.B., Bock, J.M., Imboden, M.T., Kaminsky, L.A., Mackintosh, K.A., Mcnarry, M.A., & Pfeiffer, K.A. (2018). Raw and count data comparability of hip-worn ActiGraph GT3X+ and link accelerometers. Medicine & Science in Sports & Exercise, 50(5), 11031112. https://doi.org/10.1249/MSS.0000000000001534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Napolitano, M.A., Borradaile, K.E., Lewis, B.A., Whiteley, J.A., Longval, J.L., Parisi, A.F., Albrecht, A.E., Sciamanna, C.N., Jakicic, J.M., & Papandonatos, G.D. (2010). Accelerometer use in a physical activity intervention trial. Contemporary Clinical Trials, 31(6), 514523. https://doi.org/10.1016/j.cct.2010.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozemek, C., Kirschner, M.M., Wilkerson, B.S., Byun, W., & Kaminsky, L.A. (2014). Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living. Physiological Measurement, 35(2), 129. https://doi.org/10.1088/0967-3334/35/2/129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeters, G., van Gellecum, Y., Ryde, G., Farías, N.A., & Brown, W.J. (2013). Is the pain of activity log-books worth the gain in precision when distinguishing wear and non-wear time for tri-axial accelerometers? Journal of Science and Medicine in Sport, 16(6), 515519. https://doi.org/10.1016/j.jsams.2012.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ried-Larsen, M., Brønd, J.C., Brage, S., Hansen, B.H., Grydeland, M., Andersen, L.B., & Møller, N.C. (2012). Mechanical and free living comparisons of four generations of the Actigraph activity monitor. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 113. https://doi.org/10.1186/1479-5868-9-113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safrit, M.J., & Wood, T.M. (1995). Introduction to measurement in physical education and exercise science. William C. Brown.

  • Santos-Lozano, A., Santin-Medeiros, F., Cardon, G., Torres-Luque, G., Bailon, R., Bergmeir, C., Ruiz, J., Lucia, A., & Garatachea, N. (2013). Actigraph GT3X: Validation and determination of physical activity intensity cut points. International Journal of Sports Medicine, 34(11), 975982. https://doi.org/10.1055/s-0033-1337945

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, J.E., John, D., & Freedson, P.S. (2011). Validation and comparison of ActiGraph activity monitors. Journal of Science and Medicine in Sport, 14(5), 411416. https://doi.org/10.1016/j.jsams.2011.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, P., Mota, J., Esliger, D., & Welk, G. (2010). Technical reliability assessment of the Actigraph GT1M accelerometer. Measurement in Physical Education and Exercise Science, 14(2), 7991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steel, C., Bejarano, C., & Carlson, J.A. (2019). Time drift considerations when using GPS and accelerometers. Journal for the Measurement of Physical Behaviour, 2(3), 203207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, J., Murray, D.M., Catellier, D.J., Hannan, P.J., Lytle, L.A., Elder, J.P., Young, D.R., Simons-Morton, D.G., & Webber, L.S. (2005). Design of the trial of activity in adolescent girls (TAAG). Contemporary Clinical Trials, 26(2), 223233. https://doi.org/10.1016/j.cct.2004.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Masse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181188. https://doi.org/10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., McClain, J.J., Brychta, R.J., & Chen, K.Y. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48(13), 10191023. https://doi.org/10.1136/bjsports-2014-093546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. National Library of Medicine. (2021). ClinicalTrials.gov. Retrieved from https://www.clinicaltrials.gov/ct2/results?cond=&term=actigraph&cntry=&state=&city=&dist=

    • Search Google Scholar
    • Export Citation
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Mänttäri, A., Vuorimaa, T., Suni, J., & Sievänen, H. (2015a). Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PLoS One, 10(8), Article e0134813. https://doi.org/10.1371/journal.pone.0134813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vähä‐Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievänen, H. (2015b). A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 6470. https://doi.org/10.1111/cpf.12127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Domelen, D.R., & Pittard, W.S. (2014). Flexible R functions for processing accelerometer data, with emphasis on NHANES 2003–2006. R Journal, 6, 52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V., Fang, Z., Zhao, J., Heywood, J., Mirkes, E., Sabia, S., & Migueles, J. (2019). GGIR: Raw Accelerometer Data Analysis. Retrieved from https://doi.org/10.5281/zenodo.1051064

    • Search Google Scholar
    • Export Citation
  • van Hees, V.T., Fang, Z., Langford, J., Assah, F., Mohammad, A., da Silva, I.C., Trenell, M.I., White, T., Wareham, N.J., & Brage, S. (2014). Auto-calibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. American Journal of Physiology-Heart and Circulatory Physiology, 117(7), 738744. https://doi.org/10.1152/japplphysiol.00421.2014

    • Search Google Scholar
    • Export Citation
  • van Hees, V.T., Gorzelniak, L., Leon, E.C.D., Eder, M., Pias, M., Taherian, S., Ekelund, U., Renström, F., Franks, P.W., & Horsch, A. (2013). Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS One, 8(4), Article e61691. https://doi.org/10.1371/journal.pone.0061691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanhelst, J., Mikulovic, J., Bui-Xuan, G., Dieu, O., Blondeau, T., Fardy, P., & Béghin, L. (2012). Comparison of two ActiGraph accelerometer generations in the assessment of physical activity in free living conditions. BMC Research Notes, 5(1), 187. https://doi.org/10.1186/1756-0500-5-187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, T.C., Webster, J.G., Montoye, H.J., & Washburn, R. (1981). Portable accelerometer device for measuring human energy expenditure. IEEE Transactions on Biomedical Engineering, 28(6), 467471. https://doi.org/10.1109/TBME.1981.324820

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3561 2958 67
Full Text Views 378 16 3
PDF Downloads 110 20 5