Impact of Reduced Sampling Rate on Accelerometer-Based Physical Activity Monitoring and Machine Learning Activity Classification

in Journal for the Measurement of Physical Behaviour

Click name to view affiliation

Scott SmallNuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Scott Small in
Current site
Google Scholar
PubMed
Close
*
,
Sara KhalidNuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Sara Khalid in
Current site
Google Scholar
PubMed
Close
*
,
Paula DhimanNuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Paula Dhiman in
Current site
Google Scholar
PubMed
Close
*
,
Shing ChanLi Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, Oxfordshire, United Kingdom

Search for other papers by Shing Chan in
Current site
Google Scholar
PubMed
Close
*
,
Dan JacksonOpen Lab, School of Computing, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom

Search for other papers by Dan Jackson in
Current site
Google Scholar
PubMed
Close
*
,
Aiden DohertyLi Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, Oxfordshire, United Kingdom

Search for other papers by Aiden Doherty in
Current site
Google Scholar
PubMed
Close
*
, and
Andrew PriceNuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Andrew Price in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Lowering the sampling rate of accelerometers in physical activity research can dramatically increase study monitoring periods through longer battery life; however, the effect of reduced sampling rate on activity metric validity is poorly documented. We therefore aimed to assess the effect of reduced sampling rate on measuring physical activity both overall and by specific behavior types. Methods: Healthy adults wore sets of two Axivity AX3 accelerometers on the dominant wrist and hip for 24 hr. At each location one accelerometer recorded at 25 Hz and the other at 100 Hz. Overall acceleration magnitude, time in moderate to vigorous activity, and behavioral activities were calculated and processed using both linear and nearest neighbor resampling. Correlation between acceleration magnitude and activity classifications at both sampling rates was calculated and linear regression was performed. Results: Of the 54 total participants, 45 contributed >20 hr of hip wear time and 51 contributed >20 hr of wrist wear time. Strong correlation was observed between 25- and 100-Hz sampling rates in overall activity measurement (r = .97–.99), yet consistently lower activity was observed in data collected at 25 Hz (3.1%–13.9%). Reduced sleep and light activity and increased sedentary time was classified in 25-Hz data by machine learning models. Discrepancies were greater when linear interpolation resampling was used in postprocessing. Conclusions: The 25- and 100-Hz accelerometer data are highly correlated with predictable differences, which can be accounted for in interstudy comparisons. Sampling rate and resampling methods should be consistently reported in physical activity studies, carefully considered in study design, and tailored to the outcome of interest.

Supplementary Materials

    • Supplementary Figure S1 (PDF 401 KB)
    • Supplementary Note 1 (PDF 394 KB)
    • Supplementary Table S1 (PDF 811 KB)
    • Supplementary Table S2 (PDF 420 KB)
    • Supplementary Table S3 (PDF 810 KB)
  • Collapse
  • Expand
  • Armitage, L.C., Chi, Y., Santos, M., Lawson, B.K., Areia, C., Velardo, C., Watkinson, P.J., Tarassenko, L., Costa, M.L., & Farmer, A.J. (2020). Monitoring activity of hip injury patients (MoHIP): A sub-study of the world hip trauma evaluation observational cohort study. Pilot and Feasibility Studies, 6(1), 70. https://doi.org/10.1186/s40814-020-00612-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., & Arvidsson, D. (2016). Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. Journal of Applied Physiology, 120(3), 362369. https://doi.org/10.1152/japplphysiol.00628.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, C.C.T., Nobre, G.C., Fernandes, J.F.T., Moran, J., Drury, B., Mannini, A., Gronek, P., & Podstawski, R. (2018). Physical activity characterization: Does one site fit all? Physiological Measurement, 39, 9. https://doi.org/10.1088/1361-6579/aadad0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., Mackintosh, K.A., McNarry, M.A., Brønd, J.C., Arvidsson, D., & Montoye, A.H.K.K. (2019). Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children. Physiological Measurement, 40(9), 095008. https://doi.org/10.1088/1361-6579/ab444b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Silva, S.G., Evenson, K.R., Ekelund, U., Da Silva, I.C.M., Domingues, M.R., Da Silva, B.G.C., de Almeida Mendes, M., Cruz, G.I.N., & Hallal, P.C. (2018). How many days are needed to estimate wrist-worn accelerometry-assessed physical activity during the second trimester in pregnancy? PLoS One, 14(6), Article e0211442. https://doi.org/10.1371/journal.pone.0211442

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, A., Jackson, D., Hammerla, N., Plötz, T., Olivier, P., Granat, M.H., White, T., Van Hees, V.T., Trenell, M.I., Owen, C.G., Preece, S.J., Gillions, R., Sheard, S., Peakman, T., Brage, S., & Wareham, N.J. (2017). Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. PLoS One, 12(2), Article e0169649. https://doi.org/10.1371/journal.pone.0169649

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekelund, U., Tarp, J., Steene-Johannessen, J., Hansen, B.H., Jefferis, B., Fagerland, M.W., Whincup, P., Diaz, K.M., Hooker, S.P., Chernofsky, A., Larson, M.G., Spartano, N., Vasan, R. S., Dohrn, I.M., Hagströmer, M., Edwardson, C., Yates, T., Shiroma, E., Anderssen, S.A., & Lee, I.M. (2019). Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. The BMJ, 366, Article l4570. https://doi.org/10.1136/bmj.l4570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G. (2016). Hip and wrist accelerometer algorithms for free-living behavior classification. Medicine & Science in Sports & Exercise, 48(5), 933940. https://doi.org/10.1249/MSS.0000000000000840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrahi, V., Niemelä, M., Korpelainen, R., Kangas, M., & Jämsä, T. (2019). Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture, 68, 285299. https://doi.org/10.1016/j.gaitpost.2018.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, M., Van Hees, V.T., Hansen, B.H., & Ekelund, U. (2014). Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Medicine and Science in Sports and Exercise, 46(9), 18161824. https://doi.org/10.1249/MSS.0000000000000289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karas, M., Bai, J., Straczkiewicz, M., Harezlak, J., Glynn, N.W., Harris, T., Zipunnikov, V., Crainiceanue, C., & Urbanek, J.K. (2019). Accelerometry data in health research: Challenges and opportunities review and examples. Statistics in Biosciences, 11(2), 210237. https://doi.org/10.1007/s12561-018-9227-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, A., Hammerla, N., Mellor, S., & Plötz, T. (2016). Optimising sampling rates for accelerometer-based human activity recognition. Pattern Recognition Letters, 73, 3340. https://doi.org/10.1016/j.patrec.2016.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., & Haskell, W. (2013). Activity recognition using a single accelerometer placed at the wrist or ankle. Medicine and Science in Sports and Exercise, 45(11), 21932203. https://doi.org/10.1249/MSS.0b013e31829736d6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., Labayen, I., Ruiz, J.R., & Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. https://doi.org/10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Rowlands, A.V, Huber, F., & Hees, V.T.Van. (2019). GGIR : A research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. Journal for the Measurement of Physical Behaviour, 2(3), 188196. https://doi.org/10.1123/jmpb.2018-0063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redfield, M.M., Anstrom, K.J., Levine, J.A., Koepp, G.A., Borlaug, B.A., Chen, H.H., LeWinter, M.M., Joseph, S.M., Shah, S.J., Semigran, M.J., Felker, G.M., Cole, R.T., Reeves, G.R., Tedford, R.J., Tang, W.H.W., McNulty, S.E., Velazquez, E.J., Shah, M.R., & Braunwald, E. (2015). Isosorbide mononitrate in heart failure with preserved ejection fraction. New England Journal of Medicine, 373(24), 23142324. https://doi.org/10.1056/NEJMoa1510774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricardo, L.I.C., Wendt, A., Galliano, L.M., Muller, W.de A., Cruz, G.I.N., Wehrmeister, F., Brage, S., Ekelund, U., & Silva, I.C.M. (2019). Number of days required to estimate objectively measured physical activity constructs in different age groups. BioRxiv, 610030. https://doi.org/10.1101/610030

    • Search Google Scholar
    • Export Citation
  • Small, S.R., Bullock, G.S., Khalid, S., Barker, K., Trivella, M., & Price, A.J. (2019). Current clinical utilisation of wearable motion sensors for the assessment of outcome following knee arthroplasty: A scoping review. BMJ Open, 9(12), Article e033832. https://doi.org/10.1136/bmjopen-2019-033832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taraldsen, K., Vereijken, B., Thingstad, P., Sletvold, O., & Helbostad, J.L. (2014). Multiple days of monitoring are needed to obtain a reliable estimate of physical activity in hip-fracture patients. Journal of Aging and Physical Activity, 22(2), 173177. https://doi.org/10.1123/japa.2012-0130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Mâsse, L.C., Tilert, T., & Mcdowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40(1), 181188. https://doi.org/10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievänen, H. (2015). A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 6470. https://doi.org/10.1111/cpf.12127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V.T., Fang, Z., Langford, J., Assah, F., Mohammad, A., da Silva, I.C.M., Trenell, M. I., White, T., Wareham, N.J., & Brage, S. (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. Journal of Applied Physiology, 117(7), 738744. https://doi.org/10.1152/japplphysiol.00421.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walmsley, R., Chan, S., Smith-Byrne, K., Ramakrishnan, R., Woodward, M., Rahimi, K., Dwyer, T., Bennett, D., & Doherty, A. (2020). Reallocating time from device-measured sleep, sedentary behaviour or light physical activity to moderate-to-vigorous physical activity is associated with lower cardiovascular disease risk. MedRxiv. https://doi.org/10.1101/2020.11.10.20227769

    • Search Google Scholar
    • Export Citation
  • Willetts, M., Hollowell, S., Aslett, L., Holmes, C., & Doherty, A. (2018). Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96, 220 UK Biobank participants. Scientific Reports, 8(1), 7961. https://doi.org/10.1038/s41598-018-26174-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff-Hughes, D.L., McClain, J.J., Dodd, K.W., Berrigan, D., & Troiano, R.P. (2016). Number of accelerometer monitoring days needed for stable group-level estimates of activity. Physiological Measurement, 37(9), 14471455. https://doi.org/10.1088/0967-3334/37/9/1447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., Murray, P., Zillmer, R., Eston, R.G., Catt, M., & Rowlands, A.V. (2012). Activity classification using the GENEA: Optimum sampling frequency and number of axes. Medicine and Science in Sports and Exercise, 44(11), 22282234. https://doi.org/10.1249/MSS.0b013e31825e19fd

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., Rowlands, A.V., Murray, P., & Hurst, T.L. (2012). Physical activity classification using the GENEA wrist-worn accelerometer. Medicine and Science in Sports and Exercise, 44(4), 742748. https://doi.org/10.1249/MSS.0b013e31823bf95c

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3572 2966 138
Full Text Views 450 13 6
PDF Downloads 144 17 9