Simultaneous Validation of Count-to-Activity Thresholds for Five Commonly Used Activity Monitors in Adolescent Research: A Step Toward Data Harmonization

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Department of Physical Education and Sport Sciences, Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
  • | 2 Department of Sport and Health Sciences, SHE Research Group, Athlone Institute of Technology, Athlone, Ireland
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $39.00

1 year online subscription

USD  $52.00

Student 2 year online subscription

USD  $74.00

2 year online subscription

USD  $99.00

Background: Multiple activity monitors are utilized for the estimation of moderate- to vigorous-intensity physical activity in youth. Due to differing methodological approaches, results are not comparable when developing thresholds for the determination of moderate- to vigorous-intensity physical activity. This study aimed to develop and validate count-to-activity thresholds for 1.5, 3, and 6 metabolic equivalents of task in five of the most commonly used activity monitors in adolescent research. Methods: Fifty-two participants (mean age = 16.1 [0.78] years) selected and performed activities of daily living while wearing a COSMED K4b2 and five activity monitors; ActiGraph GT1M, ActiGraph wGT3X-BT, activPAL3 micro, activPAL, and GENEActiv. Receiver-operating-characteristic analysis was used to examine the area under the curve and to define count-to-activity thresholds for the vertical axis (all monitors) and the sum of the vector magnitude (ActiGraph wGT3X-BT and activPAL3 micro) for 15 s (all monitors) and 60 s (ActiGraph monitors) epochs. Results: All developed count-to-activity thresholds demonstrated high levels of sensitivity and specificity. When cross-validated in an independent group (N = 20), high levels of sensitivity and specificity generally remained (≥73.1%, intensity and monitor dependent). Conclusions: This study provides researchers with the opportunity to analyze and cross-compare data from different studies that have not employed the same motion sensors.

Supplementary Materials

    • Supplementary Table S1 (PDF 272 KB)
  • Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Jr., Tudor-Locke, C., Greer, J.L., Vezina, J., Whitt-Glover, M.C., & Leon, A.S. (2011). 2011 compendium of physical activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 15751581. https://doi.org/10.1249/MSS.0b013e31821ece12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, D.R., Jr., Rowlands, A., & Trost, S.G. (2012). Calibration and validation of wearable monitors. Medicine & Science in Sports & Exercise, 44(Suppl. 1), S32S38. https://doi.org/10.1249/MSS.0b013e3182399cf7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butte, N.F., Watson, K.B., Ridley, K., Zakeri, I.F., McMurray, R.G., Pfeiffer, K.A., Crouter, S.E., Herrmann, S.D., Bassett, D.R., & Long, A. (2018). A youth compendium of physical activities: Activity codes and metabolic intensities. Medicine & Science in Sports & Exercise, 50(2), 246. https://doi.org/10.1249/MSS.0000000000001430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowd, K.P., Harrington, D.M., & Donnelly, A.E. (2012). Criterion and concurrent validity of the activPAL professional physical activity monitor in adolescent females. PLoS One, 7(10), Article e47633. https://doi.org/10.1371/journal.pone.0047633

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowd, K.P., Szeklicki, R., Minetto, M.A., Murphy, M.H., Polito, A., Ghigo, E., van der Ploeg, H., Ekelund, U., Maciaszek, J., & Stemplewski, R. (2018). A systematic literature review of reviews on techniques for physical activity measurement in adults: A DEDIPAC study. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 15. https://doi.org/10.1186/s12966-017-0636-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrahi, V., Niemelä, M., Kangas, M., Korpelainen, R., & Jämsä, T. (2019). Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture, 68, 285299. https://doi.org/10.1016/j.gaitpost.2018.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, D.M., Welk, G.J., & Donnelly, A.E. (2011). Validation of MET estimates and step measurement using the ActivPAL physical activity logger. Journal of Sports Sciences, 29(6), 627633. https://doi.org/10.1080/02640414.2010.549499

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jago, R., Zakeri, I., Baranowski, T., & Watson, K. (2007). Decision boundaries and receiver operating characteristic curves: New methods for determining accelerometer cutpoints. Journal of Sports Sciences, 25(8), 937944. https://doi.org/10.1080/02640410600908027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., & Freedson, P.S. (2011). Validation of wearable monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise, 43(8), 15611567. https://doi.org/10.1249/MSS.0b013e31820ce174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Kozey Keadle, S.L., Staudenmayer, J.W., & Freedson, P.S. (2012). Validity of two wearable monitors to estimate breaks from sedentary time. Medicine & Science in Sports & Exercise, 44(11), 22432252. https://doi.org/10.1249/MSS.0b013e318260c477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansoubi, M., Pearson, N., Clemes, S.A., Biddle, S.J., Bodicoat, D.H., Tolfrey, K., Edwardson, C.L., & Yates, T. (2015). Energy expenditure during common sitting and standing tasks: Examining the 1.5 MET definition of sedentary behaviour. BMC Public Health, 15(1), 516. https://doi.org/10.1186/s12889-015-1851-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, J.E., King, G.A., Howley, E.T., Bassett, D.R., Jr., & Ainsworth, B.E. (2001). Validation of the COSMED K4 b2 portable metabolic system. International Journal of Sports Medicine, 22(4), 280284. https://doi.org/10.1055/s-2001-13816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, C.E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4), 283298. https://doi.org/10.1016/s0001-2998(78)80014-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-Gonzalez, J., Lof, M., Labayen, I., Ruiz, J.R., & Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. https://doi.org/10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poole, D.C., Schaffartzik, W., Knight, D.R., Derion, T., Kennedy, B., Guy, H.J., Prediletto, R., & Wagner, P.D. (1991). Contribution of excising legs to the slow component of oxygen uptake kinetics in humans. Journal of Applied Physiology, 71(4), 12451260. https://doi.org/10.1152/jappl.1991.71.4.1245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, C., Carson, B.P., Dowd, K.P., & Donnelly, A.E. (2017). Simultaneous validation of five activity monitors for use in adult populations. Scandinavian Journal of Medicine & Science in Sports, 27(12), 18811892. https://doi.org/10.1111/sms.12813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robusto, K.M., & Trost, S.G. (2012). Comparison of three generations of ActiGraph™ activity monitors in children and adolescents. Journal of Sports Sciences, 30(13), 14291435. https://doi.org/10.1080/02640414.2012.710761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanzini, M., Petroski, E.L., Ohara, D., Dourado, A.C., & Reichert, F.F. (2014). Calibration of actiGraph GT3X, actical and RT3 accelerometers in adolescents. European Journal of Sport Science, 14(1), 9199. https://doi.org/10.1080/17461391.2012.732614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., Mirkes, E.M., Yates, T., Clemes, S., Davies, M., Khunti, K., & Edwardson, C.L. (2018). Accelerometer-assessed physical activity in epidemiology: Are monitors equivalent? Medicine & Science in Sports & Exercise, 50(2), 257265. https://doi.org/10.1249/mss.0000000000001435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saint-Maurice, P.F., Kim, Y., Welk, G.J., & Gaesser, G.A. (2016). Kids are not little adults: What MET threshold captures sedentary behavior in children? European Journal of Applied Physiology, 116(1), 2938. https://doi.org/10.1007/s00421-015-3238-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M.P., Horsch, A., Standl, M., Heinrich, J., & Schulz, H. (2018). Uni- and triaxial accelerometric signals agree during daily routine, but show differences between sports. Scientific Reports, 8(1), 15055. https://doi.org/10.1038/s41598-018-33288-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treuth, M.S., Schmitz, K., Catellier, D.J., McMurray, R.G., Murray, D.M., Almeida, M.J., Going, S., Norman, J.E., & Pate, R. (2004). Defining accelerometer thresholds for activity intensities in adolescent girls. Medicine & Science in Sports & Exercise, 36(7), 12591266.

    • Search Google Scholar
    • Export Citation
  • Trost, S.G. (2007). State of the art reviews: Measurement of physical activity in children and adolescents. American Journal of Lifestyle Medicine, 1(4), 299314. https://doi.org/10.1177/1559827607301686

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., McIver, K.L., & Pate, R.R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine & Science in Sports & Exercise, 37(11), S531S543. https://doi.org/10.1249/01.mss.0000185657.86065.98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Mänttäri, A., Vuorimaa, T., Suni, J., & Sievänen, H. (2015). Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PLoS One, 10(8), Article e0134813. https://doi.org/10.1371/journal.pone.0134813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievanen, H. (2015). A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 6470. https://doi.org/10.1111/cpf.12127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Hecke, L., Loyen, A., Verloigne, M., van der Ploeg, H.P., Lakerveld, J., Brug, J., De Bourdeaudhuij, I., Ekelund, U., Donnelly, A., Hendriksen, I., Deforche, B., & on behalf of the, D.C. (2016). Variation in population levels of physical activity in European children and adolescents according to Cross-European studies: A systematic literature review within DEDIPAC. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 70. https://doi.org/10.1186/s12966-016-0396-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J. (2005). Principles of design and analyses for the calibration of accelerometry-based activity monitors. Medicine & Science in Sports & Exercise, 37(11), S501S511. https://doi.org/10.1249/01.mss.0000185660.38335.de

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweig, M.H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561577.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 929 929 84
Full Text Views 13 13 0
PDF Downloads 18 18 0