Simultaneous Validation of Count-to-Activity Thresholds for Five Commonly Used Activity Monitors in Adolescent Research: A Step Toward Data Harmonization

in Journal for the Measurement of Physical Behaviour

Click name to view affiliation

Gráinne Hayes Department of Physical Education and Sport Sciences, Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland

Search for other papers by Gráinne Hayes in
Current site
Google Scholar
PubMed
Close
*
,
Kieran Dowd Department of Sport and Health Sciences, SHE Research Group, Athlone Institute of Technology, Athlone, Ireland

Search for other papers by Kieran Dowd in
Current site
Google Scholar
PubMed
Close
*
,
Ciaran MacDonncha Department of Physical Education and Sport Sciences, Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland

Search for other papers by Ciaran MacDonncha in
Current site
Google Scholar
PubMed
Close
*
, and
Alan Donnely Department of Physical Education and Sport Sciences, Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland

Search for other papers by Alan Donnely in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Background: Multiple activity monitors are utilized for the estimation of moderate- to vigorous-intensity physical activity in youth. Due to differing methodological approaches, results are not comparable when developing thresholds for the determination of moderate- to vigorous-intensity physical activity. This study aimed to develop and validate count-to-activity thresholds for 1.5, 3, and 6 metabolic equivalents of task in five of the most commonly used activity monitors in adolescent research. Methods: Fifty-two participants (mean age = 16.1 [0.78] years) selected and performed activities of daily living while wearing a COSMED K4b2 and five activity monitors; ActiGraph GT1M, ActiGraph wGT3X-BT, activPAL3 micro, activPAL, and GENEActiv. Receiver-operating-characteristic analysis was used to examine the area under the curve and to define count-to-activity thresholds for the vertical axis (all monitors) and the sum of the vector magnitude (ActiGraph wGT3X-BT and activPAL3 micro) for 15 s (all monitors) and 60 s (ActiGraph monitors) epochs. Results: All developed count-to-activity thresholds demonstrated high levels of sensitivity and specificity. When cross-validated in an independent group (N = 20), high levels of sensitivity and specificity generally remained (≥73.1%, intensity and monitor dependent). Conclusions: This study provides researchers with the opportunity to analyze and cross-compare data from different studies that have not employed the same motion sensors.

Supplementary Materials

    • Supplementary Table S1 (PDF 272 KB)
  • Collapse
  • Expand
  • Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Jr., Tudor-Locke, C., Greer, J.L., Vezina, J., Whitt-Glover, M.C., & Leon, A.S. (2011). 2011 compendium of physical activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 15751581. https://doi.org/10.1249/MSS.0b013e31821ece12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, D.R., Jr., Rowlands, A., & Trost, S.G. (2012). Calibration and validation of wearable monitors. Medicine & Science in Sports & Exercise, 44(Suppl. 1), S32S38. https://doi.org/10.1249/MSS.0b013e3182399cf7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butte, N.F., Watson, K.B., Ridley, K., Zakeri, I.F., McMurray, R.G., Pfeiffer, K.A., Crouter, S.E., Herrmann, S.D., Bassett, D.R., & Long, A. (2018). A youth compendium of physical activities: Activity codes and metabolic intensities. Medicine & Science in Sports & Exercise, 50(2), 246. https://doi.org/10.1249/MSS.0000000000001430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowd, K.P., Harrington, D.M., & Donnelly, A.E. (2012). Criterion and concurrent validity of the activPAL professional physical activity monitor in adolescent females. PLoS One, 7(10), Article e47633. https://doi.org/10.1371/journal.pone.0047633

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowd, K.P., Szeklicki, R., Minetto, M.A., Murphy, M.H., Polito, A., Ghigo, E., van der Ploeg, H., Ekelund, U., Maciaszek, J., & Stemplewski, R. (2018). A systematic literature review of reviews on techniques for physical activity measurement in adults: A DEDIPAC study. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 15. https://doi.org/10.1186/s12966-017-0636-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrahi, V., Niemelä, M., Kangas, M., Korpelainen, R., & Jämsä, T. (2019). Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture, 68, 285299. https://doi.org/10.1016/j.gaitpost.2018.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, D.M., Welk, G.J., & Donnelly, A.E. (2011). Validation of MET estimates and step measurement using the ActivPAL physical activity logger. Journal of Sports Sciences, 29(6), 627633. https://doi.org/10.1080/02640414.2010.549499

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jago, R., Zakeri, I., Baranowski, T., & Watson, K. (2007). Decision boundaries and receiver operating characteristic curves: New methods for determining accelerometer cutpoints. Journal of Sports Sciences, 25(8), 937944. https://doi.org/10.1080/02640410600908027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., & Freedson, P.S. (2011). Validation of wearable monitors for assessing sedentary behavior. Medicine & Science in Sports & Exercise, 43(8), 15611567. https://doi.org/10.1249/MSS.0b013e31820ce174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyden, K., Kozey Keadle, S.L., Staudenmayer, J.W., & Freedson, P.S. (2012). Validity of two wearable monitors to estimate breaks from sedentary time. Medicine & Science in Sports & Exercise, 44(11), 22432252. https://doi.org/10.1249/MSS.0b013e318260c477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansoubi, M., Pearson, N., Clemes, S.A., Biddle, S.J., Bodicoat, D.H., Tolfrey, K., Edwardson, C.L., & Yates, T. (2015). Energy expenditure during common sitting and standing tasks: Examining the 1.5 MET definition of sedentary behaviour. BMC Public Health, 15(1), 516. https://doi.org/10.1186/s12889-015-1851-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, J.E., King, G.A., Howley, E.T., Bassett, D.R., Jr., & Ainsworth, B.E. (2001). Validation of the COSMED K4 b2 portable metabolic system. International Journal of Sports Medicine, 22(4), 280284. https://doi.org/10.1055/s-2001-13816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, C.E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4), 283298. https://doi.org/10.1016/s0001-2998(78)80014-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-Gonzalez, J., Lof, M., Labayen, I., Ruiz, J.R., & Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. https://doi.org/10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poole, D.C., Schaffartzik, W., Knight, D.R., Derion, T., Kennedy, B., Guy, H.J., Prediletto, R., & Wagner, P.D. (1991). Contribution of excising legs to the slow component of oxygen uptake kinetics in humans. Journal of Applied Physiology, 71(4), 12451260. https://doi.org/10.1152/jappl.1991.71.4.1245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, C., Carson, B.P., Dowd, K.P., & Donnelly, A.E. (2017). Simultaneous validation of five activity monitors for use in adult populations. Scandinavian Journal of Medicine & Science in Sports, 27(12), 18811892. https://doi.org/10.1111/sms.12813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robusto, K.M., & Trost, S.G. (2012). Comparison of three generations of ActiGraph™ activity monitors in children and adolescents. Journal of Sports Sciences, 30(13), 14291435. https://doi.org/10.1080/02640414.2012.710761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanzini, M., Petroski, E.L., Ohara, D., Dourado, A.C., & Reichert, F.F. (2014). Calibration of actiGraph GT3X, actical and RT3 accelerometers in adolescents. European Journal of Sport Science, 14(1), 9199. https://doi.org/10.1080/17461391.2012.732614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., Mirkes, E.M., Yates, T., Clemes, S., Davies, M., Khunti, K., & Edwardson, C.L. (2018). Accelerometer-assessed physical activity in epidemiology: Are monitors equivalent? Medicine & Science in Sports & Exercise, 50(2), 257265. https://doi.org/10.1249/mss.0000000000001435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saint-Maurice, P.F., Kim, Y., Welk, G.J., & Gaesser, G.A. (2016). Kids are not little adults: What MET threshold captures sedentary behavior in children? European Journal of Applied Physiology, 116(1), 2938. https://doi.org/10.1007/s00421-015-3238-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M.P., Horsch, A., Standl, M., Heinrich, J., & Schulz, H. (2018). Uni- and triaxial accelerometric signals agree during daily routine, but show differences between sports. Scientific Reports, 8(1), 15055. https://doi.org/10.1038/s41598-018-33288-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treuth, M.S., Schmitz, K., Catellier, D.J., McMurray, R.G., Murray, D.M., Almeida, M.J., Going, S., Norman, J.E., & Pate, R. (2004). Defining accelerometer thresholds for activity intensities in adolescent girls. Medicine & Science in Sports & Exercise, 36(7), 12591266.

    • Search Google Scholar
    • Export Citation
  • Trost, S.G. (2007). State of the art reviews: Measurement of physical activity in children and adolescents. American Journal of Lifestyle Medicine, 1(4), 299314. https://doi.org/10.1177/1559827607301686

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., McIver, K.L., & Pate, R.R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine & Science in Sports & Exercise, 37(11), S531S543. https://doi.org/10.1249/01.mss.0000185657.86065.98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Mänttäri, A., Vuorimaa, T., Suni, J., & Sievänen, H. (2015). Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PLoS One, 10(8), Article e0134813. https://doi.org/10.1371/journal.pone.0134813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievanen, H. (2015). A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 6470. https://doi.org/10.1111/cpf.12127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Hecke, L., Loyen, A., Verloigne, M., van der Ploeg, H.P., Lakerveld, J., Brug, J., De Bourdeaudhuij, I., Ekelund, U., Donnelly, A., Hendriksen, I., Deforche, B., & on behalf of the, D.C. (2016). Variation in population levels of physical activity in European children and adolescents according to Cross-European studies: A systematic literature review within DEDIPAC. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 70. https://doi.org/10.1186/s12966-016-0396-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J. (2005). Principles of design and analyses for the calibration of accelerometry-based activity monitors. Medicine & Science in Sports & Exercise, 37(11), S501S511. https://doi.org/10.1249/01.mss.0000185660.38335.de

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweig, M.H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561577.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3774 1354 44
Full Text Views 24 5 1
PDF Downloads 36 8 2