Implications and Recommendations for Equivalence Testing in Measures of Movement Behaviors: A Scoping Review

in Journal for the Measurement of Physical Behaviour

Click name to view affiliation

Myles W. O’BrienSchool of Health and Human Performance, Division of Kinesiology, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Myles W. O’Brien in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Equivalence testing may provide complementary information to more frequently used statistical procedures because it determines whether physical behavior outcomes are statistically equivalent to criterion measures. A caveat of this procedure is the predetermined selection of upper and lower bounds of acceptable error around a specified zone of equivalence. With no clear guidelines available to assist researchers, these equivalence zones are arbitrarily selected. A scoping review of articles implementing equivalence testing was performed to determine the validity of physical behavior outcomes; the aim was to characterize how this procedure has been implemented and to provide recommendations. A literature search from five databases initially identified potentially 1,153 articles which resulted in the acceptance of 19 studies (20 arms) conducted in children/youth and 40 in adults (49 arms). Most studies were conducted in free-living conditions (children/youth = 13 arms; adults = 22 arms) and employed a ±10% equivalence zone. However, equivalence zones ranged from ±3% to ±25% with only a subset using absolute thresholds (e.g., ±1,000 steps/day). If these equivalence zones were increased or decreased by ±5%, 75% (15/20, children/youth) and 71% (35/49, adults), they would have exhibited opposing equivalence test outcomes (i.e., equivalent to nonequivalent or vice versa). This scoping review identifies the heterogeneous usage of equivalence testing in studies examining the accuracy of (in)activity measures. In the absence of evidence-based standardized equivalence criteria, presenting the percentage required to achieve statistical equivalence or using absolute thresholds as a proportion of the SD may be a better practice than arbitrarily selecting zones a priori.

O’Brien (myles.obrien@dal.ca) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 477 KB)
    • Supplementary Table S2 (PDF 520 KB)
    • Supplementary Table S3 (PDF 688 KB)
    • Supplementary Table S4 (PDF 535 KB)
    • Supplementary Table S5 (PDF 577 KB)
  • Collapse
  • Expand
  • An, H.-S., Jones, G.C., Kang, S.-K., Welk, G.J., & Lee, J.-M. (2017). How valid are wearable physical activity trackers for measuring steps? European Journal of Sport Science, 17(3), 360368. https://doi.org/10.1080/17461391.2016.1255261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, H.-S., Kim, Y., & Lee, J.-M. (2017). Accuracy of inclinometer functions of the activPAL and ActiGraph GT3X+: A focus on physical activity. Gait & Posture, 51, 174180. https://doi.org/10.1016/j.gaitpost.2016.10.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, Y., Hibbing, P., Mantis, C., & Welk, G.J. (2018). Comparative evaluation of heart rate-based monitors: Apple Watch vs Fitbit Charge HR. Journal of Sports Sciences, 36(15), 17341741. https://doi.org/10.1080/02640414.2017.1412235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, Y., Welk, G.J., Nam, Y.H., Lee, J.A., Lee, J.-M., Kim, Y., Meier, N.F., & Dixon, P.M. (2016). Comparison of consumer and research monitors under semistructured settings. Medicine & Science in Sports & Exercise, 48(1), 151158. https://doi.org/10.1249/MSS.0000000000000727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, D.R., Rowlands, A., & Trost, S.G. (2012). Calibration and validation of wearable monitors. Medicine & Science in Sports & Exercise, 44(Suppl. 1), S32S38. https://doi.org/10.1249/MSS.0b013e3182399cf7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benning, N., Knaup, P., & Rupp, R. (2020). Comparison of accuracy of activity measurements with wearable activity trackers in wheelchair users: A preliminary evaluation. GMS Medizinische Informatik, Biometrie Und Epidemiologie, 16(2), 19. https://doi.org/10.3205/mibe000208

    • Search Google Scholar
    • Export Citation
  • Boddy, L.M., Noonan, R.J., Kim, Y., Rowlands, A.V, Welk, G.J., Knowles, Z.R., & Fairclough, S.J. (2018). Comparability of children’s sedentary time estimates derived from wrist worn GENEActiv and hip worn ActiGraph accelerometer thresholds. Journal of Science and Medicine in Sport, 21(10), 10451049. https://doi.org/10.1016/j.jsams.2018.03.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boddy, L.M., Noonan, R.J., Rowlands, A.V., Hurter, L., Knowles, Z.R., & Fairclough, S.J. (2019). The backwards comparability of wrist worn GENEActiv and waist worn ActiGraph accelerometer estimates of sedentary time in children. Journal of Science and Medicine in Sport, 22(7), 814820. https://doi.org/10.1016/j.jsams.2019.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bort-Roig, J., Chirveches-Pérez, E., Garcia-Cuyàs, F., Dowd, K.P., & Puig-Ribera, A. (2020). Monitoring occupational sitting, standing, and stepping in office employees with the W@W-app and the metawearc sensor: Validation study. JMIR mHealth and uHealth, 8(8), Article e15338. https://doi.org/10.2196/15338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooke, S.M., An, H.-S., Kang, S.-K., Noble, J.M., Berg, K.E., & Lee, J.-M. (2017). Concurrent validity of wearable activity trackers under free-living conditions. Journal of Strength and Conditioning Research, 31(4), 10971106. https://doi.org/10.1519/JSC.0000000000001571

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchan, D.S., Boddy, L.M., & McLellan, G. (2020). Comparison of free-living and laboratory activity outcomes from ActiGraph accelerometers worn on the dominant and non-dominant wrists. Measurement in Physical Education and Exercise Science, 24(4), 247257. https://doi.org/10.1080/1091367X.2020.1801441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchan, D.S., & McLellan, G. (2019). Comparing physical activity estimates in children from hip-worn Actigraph GT3X+ accelerometers using raw and counts based processing methods. Journal of Sports Sciences, 37(7), 779787. https://doi.org/10.1080/02640414.2018.1527198

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byun, W., Kim, Y., & Brusseau, T.A. (2018). The use of a Fitbit device for assessing physical activity and sedentary behavior in preschoolers. The Journal of Pediatrics, 199, 3540. https://doi.org/10.1016/j.jpeds.2018.03.057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calabro, M.A., Kim, Y., Franke, W.D., Stewart, J.M., & Welk, G.J. (2015). Objective and subjective measurement of energy expenditure in older adults: A doubly labeled water study. European Journal of Clinical Nutrition, 69(7), 850855. https://doi.org/10.1038/ejcn.2014.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellini, N., McDevitt, E.A., Mednick, S.C., & Buman, M.P. (2016). Free-living cross-comparison of two wearable monitors for sleep and physical activity in healthy young adults. Physiology & Behavior, 157, 7986. https://doi.org/10.1016/j.physbeh.2016.01.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhury, E.A., Western, M.J., Nightingale, T.E., Peacock, O.J., & Thompson, D. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS One, 12(2), Article e0171720. https://doi.org/10.1371/journal.pone.0171720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Molesky, M.J., Vusich, J., & Montoye, A.H.K. (2019). Free-living comparison of physical activity and sleep data from Fitbit activity trackers worn on the dominant and nondominant wrists. Measurement in Physical Education and Exercise Science, 23(2), 194204. https://doi.org/10.1080/1091367X.2019.1577737

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., & Montoye, A.H.K. (2020a). Cross-generational comparability of raw and count-based metrics from ActiGraph GT9X and wGT3X-BT accelerometers during free-living in youth. Measurement in Physical Education and Exercise Science, 24(3), 194204. https://doi.org/10.1080/1091367X.2020.1773827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., & Montoye, A.H.K. (2020b). Cross-generational comparability of hip- and wrist-worn ActiGraph GT3X+, wGT3X-BT, and GT9X accelerometers during free-living in adults. Journal of Sports Sciences, 38(24), 27942802. https://doi.org/10.1080/02640414.2020.1801320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crotti, M., Foweather, L., Rudd, J.R., Hurter, L., Schwarz, S., & Boddy, L.M. (2020). Development of raw acceleration cut-points for wrist and hip accelerometers to assess sedentary behaviour and physical activity in 5-7-year-old children. Journal of Sports Sciences, 38(9), 10361045. https://doi.org/10.1080/02640414.2020.1740469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., LaMunion, S.R., Hibbing, P.R., Kaplan, A.S., & Bassett, D.R. (2019). Accuracy of the cosmed K5 portable calorimeter. PLoS One, 14(12), Article e0226290. https://doi.org/10.1371/journal.pone.0226290

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, A., Allman-Farinelli, M., Owen, K., Signal, L., Hosking, C., Wang, L., & Bauman, A. (2020). Feasibility study comparing physical activity classifications from accelerometers with wearable camera data. International Journal of Environmental Research and Public Health, 17(24), 113. https://doi.org/10.3390/ijerph17249323

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeShaw, K.J., Ellingson, L., Bai, Y., Lansing, J., Perez, M., & Welk, G. (2018). Methods for activity monitor validation studies: An example with the Fitbit Charge. Journal for the Measurement of Physical Behaviour, 1(3), 130135. https://doi.org/10.1123/jmpb.2018-0017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P.M., Saint-Maurice, P.F., Kim, Y., Hibbing, P., Bai, Y., & Welk, G.J. (2018). A primer on the use of equivalence testing for evaluating measurement agreement. Medicine & Science in Sports & Exercise, 50(4), 837845. https://doi.org/10.1249/MSS.0000000000001481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donahoe, K., Macdonald, D.J., Tremblay, M.S., & Saunders, T.J. (2018). Validation of PiezoRx pedometer derived sedentary time. International Journal of Exercise Science, 11(7), 552560.

    • Search Google Scholar
    • Export Citation
  • Drevon, D., Fursa, S.R., & Malcolm, A.L. (2017). Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behavior Modification, 41(2), 323339. https://doi.org/10.1177/0145445516673998

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, L.D., Hibbing, P.R., Kim, Y., Frey-Law, L.A., Saint-Maurice, P.F., & Welk, G.J. (2017). Lab-based validation of different data processing methods for wrist-worn ActiGraph accelerometers in young adults. Physiological Measurement, 38(6), 10451060. https://doi.org/10.1088/1361-6579/aa6d00

    • Crossref
    • Search Google Scholar
    • Export Citation
  • European Medicines Agency. (2010). Guideline on the investigation of bioequivalence. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf Accessed March 3, 2021.

    • Search Google Scholar
    • Export Citation
  • Fabre, N., Lhuisset, L., Bernal, C., & Bois, J. (2020). Effect of epoch length on intensity classification and on accuracy of measurement under controlled conditions on treadmill: Towards a better understanding of accelerometer measurement. PLoS One, 15(1), Article e0227740. https://doi.org/10.1371/journal.pone.0227740

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairclough, S.J., Christian, D.L., Saint-Maurice, P.F., Hibbing, P.R., Noonan, R.J., Welk, G.J., Dixon, P.M., & Boddy, L.M. (2019). Calibration and validation of the youth activity profile as a physical activity and sedentary behaviour surveillance tool for English youth. International Journal of Environmental Research and Public Health, 16(19), 3711. https://doi.org/10.3390/ijerph16193711

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Floegel, T.A., Florez-Pregonero, A., Hekler, E.B., & Buman, M.P. (2017). Validation of consumer-based hip and wrist activity monitors in older adults with varied ambulatory abilities. The Journals of Gerontology, Series A: Biological Sciences & Medical Sciences, 72(2), 229236. https://doi.org/10.1093/gerona/glw098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Florez-Pregonero, A., Meckes, N., Buman, M., & Ainsworth, B.E. (2017). Wearable monitors criterion validity for energy expenditure in sedentary and light activities. Journal of Sport and Health Science, 6(1), 103110. https://doi.org/10.1016/j.jshs.2016.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gore, S., Blackwood, J., Guyette, M., & Alsalaheen, B. (2018). Validity and reliability of accelerometers in patients with COPD: A systematic review. Journal of Cardiopulmonary Rehabilitation and Prevention, 38(3), 147158. https://doi.org/10.1097/HCR.0000000000000284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Y., Ma, X.K., Zhu, Z., & Cao, Z.B. (2021). Validity of wrist-wearable activity devices for estimating physical activity in adolescents: Comparative study. JMIR mHealth and uHealth, 9(1), Article e18320. https://doi.org/10.2196/18320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauck, W.W., & Anderson, S. (1984). A new statistical procedure for testing equivalence in two-group comparative bioavailability trials. Journal of Pharmacokinetics and Biopharmaceutics, 12(1), 8391. https://doi.org/10.1007/BF01063612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendrikx, J., Ruijs, L.S., Cox, L.G.E., Lemmens, P.M.C., Schuijers, E.G.P., & Goris, A.H.C. (2017). Clinical evaluation of the measurement performance of the Philips health watch: A within-person comparative study. JMIR mHealth and uHealth, 5(2), e10. https://doi.org/10.2196/mhealth.6893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurter, L., Fairclough, S., Knowles, Z., Porcellato, L., Cooper-Ryan, A., & Boddy, L. (2018). Establishing raw acceleration thresholds to classify sedentary and stationary behaviour in children. Children, 5(12), 172. https://doi.org/10.3390/children5120172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurter, L., Rowlands, A.V., Fairclough, S.J., Gibbon, K.C., Knowles, Z.R., Porcellato, L.A., Cooper-Ryan, A.M., & Boddy, L.M. (2019). Validating the sedentary sphere method in children: Does wrist or accelerometer brand matter? Journal of Sports Sciences, 37(16), 19101918. https://doi.org/10.1080/02640414.2019.1605647

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, W., Judice, P.B., Molina García, P., Mühlen, J.M., Lykke Skovgaard, E., Stang, J., Schumann, M., Cheng, S., Bloch, W., Brønd, J.C., Ekelund, U., Grøntved, A., Caulfield, B., Ortega, F.B., & Sardinha, L.B. (2020). Recommendations for determining the validity of consumer wearable and smartphone step count: Expert statement and checklist of the INTERLIVE network. British Journal of Sports Medicine, 55(14), 780793. https://doi.org/10.1136/bjsports-2020-103147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keadle, S.K., Lyden, K.A., Strath, S.J., Staudenmayer, J.W., & Freedson, P.S. (2019). A framework to evaluate devices that assess physical behavior. Exercise and Sport Sciences Reviews, 47(4), 206214. https://doi.org/10.1249/JES.0000000000000206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., Crouter, S.E., Lee, J.-M., Dixon, P.M., Gaesser, G.A., & Welk, G.J. (2016). Comparisons of prediction equations for estimating energy expenditure in youth. Journal of Science and Medicine in Sport, 19(1), 3540. https://doi.org/10.1016/j.jsams.2014.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., & Lochbaum, M. (2018). Comparison of polar active watch and waist-and wrist-worn actigraph accelerometers for measuring children’s physical activity levels during unstructured afterschool programs. International Journal of Environmental Research and Public Health, 15(10), 2268. https://doi.org/10.3390/ijerph15102268

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., & Welk, G.J. (2015). Criterion validity of competing accelerometry-based activity monitoring devices. Medicine & Science in Sports & Exercise, 47(11), 24562463. https://doi.org/10.1249/MSS.0000000000000691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., & Welk, G.J. (2017). The accuracy of the 24-h activity recall method for assessing sedentary behaviour: The physical activity measurement survey (PAMS) project. Journal of Sports Sciences, 35(3), 255261. https://doi.org/10.1080/02640414.2016.1161218

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, S., Wan, N., Burns, R.D., Brusseau, T.A., Kim, Y., Kumar, S., Ertin, E., Wetter, D.W., Lam, C.Y., Wen, M., & Byun, W. (2021). The validity of MotionSense HRV in estimating sedentary behavior and physical activity under free-living and simulated activity settings. Sensors, 21(4), 118. https://doi.org/10.3390/s21041411

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakens, D., Scheel, A.M., & Isager, P.M. (2018). Equivalence testing for psychological research: A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259269. https://doi.org/10.1177/2515245918770963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-M., Kim, Y., & Welk, G.J. (2014). Validity of consumer-based physical activity monitors. Medicine & Science in Sports & Exercise, 46(9), 18401848. https://doi.org/10.1249/MSS.0000000000000287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemmens, P.M.C., Sartor, F., Cox, L.G.E., den Boer, S.V, & Westerink, J.H.D.M. (2018). Evaluation of an activity monitor for use in pregnancy to help reduce excessive gestational weight gain. BMC Pregnancy and Childbirth, 18(1), 312. https://doi.org/10.1186/s12884-018-1941-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maganja, S.A., Clarke, D.C., Lear, S.A., & Mackey, D.C. (2020). Formative evaluation of consumer-grade activity monitors worn by older adults: Test-retest reliability and criterion validity of step counts. JMIR Formative Research, 4(8), Article e16537. https://doi.org/10.2196/16537

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Dahmen, J., Campbell, N., & Connolly, C.P. (2019). Accuracy of physical activity monitors for steps and calorie measurement during pregnancy walking. Journal for the Measurement of Physical Behaviour, 2(3), 143156. https://doi.org/10.1123/jmpb.2018-0067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, C.E., Wessel, P.A., Tinius, R.A., Schafer, M.A., & Maples, J.M. (2019). Validity of activity trackers in estimating energy expenditure during high-intensity functional training. Research Quarterly for Exercise and Sport, 90(3), 377384. https://doi.org/10.1080/02701367.2019.1603989

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mühlen, J.M., Stang, J., Lykke Skovgaard, E., Judice, P.B., Molina-Garcia, P., Johnston, W., Sardinha, L.B., Ortega, F.B., Caulfield, B., Bloch, W., Cheng, S., Ekelund, U., Brønd, J.C., Grøntved, A., & Schumann, M. (2021). Recommendations for determining the validity of consumer wearable heart rate devices: Expert statement and checklist of the INTERLIVE Network. British Journal of Sports Medicine, 55, 767779. https://doi.org/10.1136/bjsports-2020-103148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munn, Z., Peters, M.D.J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Medical Research Methodology, 18(1), 143. https://doi.org/10.1186/s12874-018-0611-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, M., Johns, J.A., Fowles, J.R., & Kimmerly, D.S. (2020). Validity of the activPAL and height-adjusted curvilinear cadence-METs equations in healthy adults. Measurement in Physical Education and Exercise Science, 24(2), 147156. https://doi.org/10.1080/1091367X.2020.1724112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Driscoll, R., Turicchi, J., Hopkins, M., Horgan, G.W., Finlayson, G., & Stubbs, J.R. (2020). Improving energy expenditure estimates from wearable devices: A machine learning approach. Journal of Sports Sciences, 38(13), 14961505. https://doi.org/10.1080/02640414.2020.1746088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okely, A.D., Batterham, M.J., Hinkley, T., Ekelund, U., Brage, Sø., Reilly, J.J., Trost, S.G., Jones, R.A., Janssen, X., Cliff, D.P., & Van Loo, C.M.T. (2018). Wrist acceleration cut points for moderate-to-vigorous physical activity in youth. Medicine & Science in Sports & Exercise, 50(3), 609616. https://doi.org/10.1249/MSS.0000000000001449

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira, J.R., Sousa-Sá, E., Zhang, Z., Cliff, D.P., & Santos, R. (2020). Concurrent validity of the ActiGraph GT3X+ and activPAL for assessing sedentary behaviour in 2–3-year-old children under free-living conditions. Journal of Science and Medicine in Sport, 23(2), 151156. https://doi.org/10.1016/j.jsams.2019.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pisanu, S., Deledda, A., Loviselli, A., Huybrechts, I., & Velluzzi, F. (2020). Validity of accelerometers for the evaluation of energy expenditure in obese and overweight individuals: A systematic review. Journal of Nutrition and Metabolism, 2020, 122. https://doi.org/10.1155/2020/2327017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, Z.C., Zeng, N., Li, X., Liu, W., & Gao, Z. (2019). Accuracy of commercially available smartwatches in assessing energy expenditure during rest and exercise. Journal for the Measurement of Physical Behaviour, 2(2), 7381. https://doi.org/10.1123/jmpb.2018-0037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redenius, N., Kim, Y., & Byun, W. (2019). Concurrent validity of the Fitbit for assessing sedentary behavior and moderate-to-vigorous physical activity. BMC Medical Research Methodology, 19(1), 29. https://doi.org/10.1186/s12874-019-0668-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Buman, M.P., Haskell, W.L., McConnell, M.V., & Carstensen, L.L. (2016). Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Medicine & Science in Sports & Exercise, 48(3), 457465. https://doi.org/10.1249/MSS.0000000000000778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., Mirkes, E.M., Yates, T., Clemes, S., Davies, M., Khunti, K., & Edwardson, C.L. (2018). Accelerometer-assessed physical activity in epidemiology: Are monitors equivalent? Medicine & Science in Sports & Exercise, 50(2), 257265. https://doi.org/10.1249/MSS.0000000000001435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saint-Maurice, P.F., & Welk, G.J. (2015). Validity and calibration of the youth activity profile. PLoS One, 10(12), Article e0143949. https://doi.org/10.1371/journal.pone.0143949

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasai, H., Nakata, Y., Murakami, H., Kawakami, R., Nakae, S., Tanaka, S., Ishikawa-Takata, K., Yamada, Y., & Miyachi, M. (2018). Simultaneous validation of seven physical activity questionnaires used in Japanese cohorts for estimating energy expenditure: A doubly labeled water study. Journal of Epidemiology, 28(10), 437442. https://doi.org/10.2188/jea.JE20170129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sattler, M.C., Jaunig, J., Tösch, C., Watson, E.D., Mokkink, L.B., Dietz, P., & van Poppel, M.N.M. (2020). Current evidence of measurement properties of physical activity questionnaires for older adults: An updated systematic review. Sports Medicine, 50(7), 12711315. https://doi.org/10.1007/s40279-020-01268-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shwetar, Y.J., Veerubhotla, A.L., Huang, Z., & Ding, D. (2020). Comparative validity of energy expenditure prediction algorithms using wearable devices for people with spinal cord injury. Spinal Cord, 58(7), 821830. https://doi.org/10.1038/s41393-020-0427-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šimůnek, A., Dygrýn, J., Jakubec, L., Neuls, F., Frömel, K., & Welk, G.J. (2019). Validity of Garmin Vívofit 1 and Garmin Vívofit 3 for school-based physical activity monitoring. Pediatric Exercise Science, 31(1), 130136. https://doi.org/10.1123/pes.2018-0019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, C., Hikihara, Y., Innoue, S., & Tanaka, S. (2019). The choice of pedometer impacts on daily step counts in primary school children under free-livng conditions. International Journal of Environmental Research and Public Health, 16(22), 4375. https://doi.org/10.3390/ijerph16224375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, W.J., Bhammar, D.M., Sawyer, B.J., Buman, M.P., & Gaesser, G.A. (2015). Validity and reliability of Nike+ Fuelband for estimating physical activity energy expenditure. BMC Sports Science, Medicine and Rehabilitation, 7(1), 14. https://doi.org/10.1186/s13102-015-0008-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loo, C.M.T., Okely, A.D., Batterham, M.J., Hinkley, T., Ekelund, U., Brage, S., Reilly, J.J., Jones, R.A., Janssen, X., & Cliff, D.P. (2017a). Validation of thigh-based accelerometer estimates of postural allocation in 5-12 year-olds. Journal of Science and Medicine in Sport, 20(3), 273277. https://doi.org/10.1016/j.jsams.2016.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loo, C.M.T., Okely, A.D., Batterham, M.J., Hinkley, T., Ekelund, U., Brage, S., Reilly, J.J., Peoples, G.E., Jones, R.A., Janssen, X., & Cliff, D.P. (2017b). Validation of the sensewear mini activity monitor in 5-12-year-old children. Journal of Science and Medicine in Sport, 20(1), 5559. https://doi.org/10.1016/j.jsams.2016.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loo, C.M.T., Okely, A.D., Batterham, M.J., Hinkley, T., Ekelund, U., Brage, S., Reilly, J.J., Trost, S.G., Jones, R.A., Janssen, X., & Cliff, D.P. (2017c). Wrist accelerometer cut points for classifying sedentary behavior in children. Medicine & Science in Sports & Exercise, 49(4), 813822. https://doi.org/10.1249/MSS.0000000000001158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G., Kim, Y., Shook, R.P., Ellingson, L., & Lobelo, R.L. (2017). Validation of a noninvasive, disposable activity monitor for clinical applications. Journal of Physical Activity and Health, 14(7), 546551. https://doi.org/10.1123/jpah.2016-0003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J., Bai, Y., Lee, J.M., Godino, J.O.B., Saint-Maurice, P.F., & Carr, L. (2019). Standardizing analytic methods and reporting in activity monitor validation studies. Medicine & Science in Sports & Exercise, 51(8), 17671780. https://doi.org/10.1249/MSS.0000000000001966

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J., Beyler, N.K., Kim, Y., & Matthews, C.E. (2017). Calibration of self-report measures of physical activity and sedentary behavior. Medicine & Science in Sports & Exercise, 49(7), 14731481. https://doi.org/10.1249/MSS.0000000000001237

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J., Kim, Y., Stanfill, B., Osthus, D.A., Calabro, M.A., Nusser, S.M., & Carriquiry, A. (2014). Validity of 24-h physical activity recall: Physical activity measurement survey. Medicine & Science in Sports & Exercise, 46(10), 20142024. https://doi.org/10.1249/MSS.0000000000000314

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., Johns, J.A., Poitras, J., Kimmerly, D.S., & O’Brien, M.W. (2020). Improving the criterion validity of the activPAL in determining physical activity intensity during laboratory and free-living conditions. Journal of Sports Sciences, 39(7), 826834. https://doi.org/10.1080/02640414.2020.1847503

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., Burns, R.D., Fu, Y., Godin, S., & Byun, W. (2019). Agreement between the Apple Series 1, Lifetrak Core C200, and Fitbit Charge HR with indirect calorimetry for assessing treadmill energy expenditure. International Journal of Environmental Research and Public Health, 16(20), 3812. https://doi.org/10.3390/ijerph16203812

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3479 2824 42
Full Text Views 459 13 2
PDF Downloads 159 12 3