ActiGraph Cutpoints Impact Physical Activity and Sedentary Behavior Outcomes in Young Children

Click name to view affiliation

Becky Breau Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany

Search for other papers by Becky Breau in
Current site
Google Scholar
PubMed
Close
,
Hannah J. Coyle-Asbil Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Search for other papers by Hannah J. Coyle-Asbil in
Current site
Google Scholar
PubMed
Close
,
Jess Haines Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, ON, Canada

Search for other papers by Jess Haines in
Current site
Google Scholar
PubMed
Close
,
David W.L. Ma Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Search for other papers by David W.L. Ma in
Current site
Google Scholar
PubMed
Close
,
Lori Ann Vallis Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Search for other papers by Lori Ann Vallis in
Current site
Google Scholar
PubMed
Close
*
, and
on behalf of the Guelph Family Health Study
Search for other papers by on behalf of the Guelph Family Health Study in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Examine the effect of cutpoint selection on physical activity (PA) metrics calculated from young children’s accelerometer data and on the proportion of children meeting PA guidelines. Methods: A total of 262 children (3.6 ± 1.4 years, 126 males) wore ActiGraph wGT3X-BT accelerometers on their right hip for 7 days, 24 hr/day. Ten cutpoint sets were applied to the sample categorized by age, based on populations of the original cutpoint calibration studies using ActiLife software. Resulting sedentary behavior, light PA, moderate to vigorous PA, and total PA were compared using repeated-measures analysis of variance. Proportion of children meeting age-appropriate PA guidelines based on each cutpoint set was assessed using Cochran’s q tests. Results: Children wore the accelerometer for an average of 7.6 ± 1.2 days for an average of 11.9 ± 1.2 hr/day. Significant differences in time spent in each intensity were found across all cutpoints except for sedentary, and total PA for three comparisons (Trost vs. Butte Vertical Axis [VA], Pate vs. Puyau, and Costa VA vs. Evenson) and moderate to vigorous PA for four comparisons (Trost vs. Pate, Trost vs. Pate and Pfeiffer, Pate vs. Pate and Pfeiffer, and van Cauwenberghe vs. Evenson). When examined within age-appropriate groups, all sets of cutpoints resulted in significant differences across all intensities and in the number of children meeting PA guidelines. Conclusion: Choice of cutpoints applied to data from young children significantly affects times calculated for different movement intensities, which in turn impacts the proportion of children meeting guidelines. Thus, comparisons of movement intensities should not be made across studies using different sets of cutpoints.

Supplementary Materials

    • Supplementary Table S1 (PDF 601 KB)
    • Supplementary Table S2 (PDF 720 KB)
  • Collapse
  • Expand
  • ActiGraph. (2012). Actilife 6 user’s manual [User’s Manual]. SFT12DOC13, 189.

  • ActiGraph. (2018). Low frequency extension explained. https://actigraphcorp.force.com/support/s/article/Low-Frequency-Extension-Explained

    • Search Google Scholar
    • Export Citation
  • Aubert, S., Barnes, J.D., Abdeta, C., Abi Nader, P., Adeniyi, A.F., Aguilar-Farias, N., Andrade Tenesaca, D.S., Bhawra, J., Brazo-Sayavera, J., Cardon, G., Chang, C.K., Delisle Nystrom, C., Demetriou, Y., Draper, C.E., Edwards, L., Emeljanovas, A., Gaba, A., Galaviz, K.I., Gonzalez, S.A., . . . Tremblay, M.S. (2018). Global matrix 3.0 physical activity report card grades for children and youth: Results and analysis from 49 countries. Journal of Physical Activity and Health, 15(Suppl. 2), S251S273. https://doi.org/10.1123/jpah.2018-0472

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bammann, K., Sioen, I., Huybrechts, I., Casajus, J.A., Vicente-Rodriguez, G., Cuthill, R., Konstabel, K., Tubic, B., Wawro, N., Rayson, M., Westerterp, K., Marild, S., Pitsiladis, Y.P., Reilly, J.J., Moreno, L.A., De Henauw, S., & Consortium, I. (2011). The IDEFICS validation study on field methods for assessing physical activity and body composition in children: Design and data collection. International Journal of Obesity, 35(Suppl. 1), S79S87. https://doi.org/10.1038/ijo.2011.38

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, D.B., Beets, M.W., Byun, W., Welk, G., Bottai, M., Dowda, M., & Pate, R. (2011). Equating accelerometer estimates of moderate-to-vigorous physical activity: In search of the Rosetta stone. Journal of Science and Medicine in Sport, 14(5), 404410. https://doi.org/10.1016/j.jsams.2011.03.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branta, C., Haubenstricker, J., & Seefeldt, V. (1984). Age changes in motor skills during childhood and adolescence. Exercise and Sport Sciences Reviews, 12, 467520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brazendale, K., Beets, M.W., Bornstein, D.B., Moore, J.B., Pate, R.R., Weaver, R.G., Falck, R.S., Chandler, J.L., Andersen, L.B., Anderssen, S.A., Cardon, G., Cooper, A., Davey, R., Froberg, K., Hallal, P.C., Janz, K.F., Kordas, K., Kriemler, S., Puder, J.J., . . . International Children’s Accelerometry Database Collaborators. (2016). Equating accelerometer estimates among youth: The Rosetta stone 2. Journal of Science and Medicine in Sport, 19(3), 242249. https://doi.org/10.1016/j.jsams.2015.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchartz, A., Anedda, B., Auerswald, T., Giurgiu, M., Hill, H., Ketelhut, S., Kolb, S., Mall, C., Manz, K., Nigg, C.R., Reichert, M., Sprengeler, O., Wunsch, K., & Matthews, C.E. (2020). Assessing physical behavior through accelerometry—State of the science, best practices and future directions. Psychology of Sport and Exercise, 49, Article 101703. https://doi.org/10.1016/j.psychsport.2020.101703

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butte, N.F., Wong, W.W., Lee, J.S., Adolph, A.L., Puyau, M.R., & Zakeri, I.F. (2014). Prediction of energy expenditure and physical activity in preschoolers. Medicine & Science in Sports & Exercise, 46(6), 12161226. https://doi.org/10.1249/MSS.0000000000000209

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cain, K.L., Sallis, J.F., Conway, T.L., Van Dyck, D., & Calhoon, L. (2013). Using accelerometers in youth physical activity studies: A review of methods. Journal of Physical Activity & Health, 10(3), 437450. https://doi.org/10.1123/jpah.10.3.437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, V., Lee, E.Y., Hewitt, L., Jennings, C., Hunter, S., Kuzik, N., Stearns, J.A., Unrau, S. P., Poitras, V.J., Gray, C., Adamo, K.B., Janssen, I., Okely, A.D., Spence, J.C., Timmons, B.W., Sampson, M., & Tremblay, M.S. (2017). Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years). BMC Public Health, 17, 854. https://doi.org/10.1186/s12889-017-4860-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise, 43(2), 357364. https://doi.org/10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cliff, D.P., Reilly, J.J., Okely, A.D., Cliff, D.P., Reilly, J.J., & Okely, A.D. (2009). Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0–5 years. Journal of Science and Medicine in Sport, 12(5), 557567. https://doi.org/10.1016/j.jsams.2008.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, S., Barber, S. E., Cameron, N., & Clemes, S. A. (2014). Calibration and validation of the Actigraph GT3X+ in 2–3 year olds [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t]. Journal of Science and Medicine in Sport, 17(6), 617622. https://doi.org/10.1016/j.jsams.2013.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle-Asbil, H.J., Breau, B., Ma, D.W.L., Haines, J., Vallis, L.A., & Guelph Family Health Study. (2020). Examining the effects of applying ActiGraph low-frequency extension feature to analyze the sleeping behaviours of preschool-aged children. Applied Physiology, Nutrition and Metabolism, 45(12), 13961399. https://doi.org/10.1139/apnm-2019-0969

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosman, C.F., Andrews, D., & Goulden, K.J. (2012). Evidence-based milestone ages as a framework for developmental surveillance. Paediatrics & Child Health, 17(10), 561568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Catellier, D.J., Gill, K., Ondrak, K.S., & McMurray, R.G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 15571565. https://doi.org/10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P., Pober, D., & Janz, K.F. (2005). Calibration of accelerometer output for children. Medicine & Science in Sports & Exercise, 37(11, Suppl. 1), S523S530. https://doi.org/10.1249/01.mss.0000185658.28284.ba

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutierrez-Hervas, A., Cortes-Castell, E., Juste-Ruiz, M., & Rizo-Baeza, M. (2020). Which variables influence compliance with physical activity recommendations in young children? Anales De Pediatria, 92(3), 156164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, X., Cliff, D.P., Reilly, J.J., Hinkley, T., Jones, R.A., Batterham, M., Ekelund, U., Brage, S., & Okely, A.D. (2013). Predictive validity and classification accuracy of actigraph energy expenditure equations and cut-points in young children. PLoS One, 8(11), Article e79124. https://doi.org/10.1371/journal.pone.0079124

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahan, D., Nicaise, V., & Reuben, K. (2013). Convergent validity of four accelerometer cutpoints with direct observation of preschool children’s outdoor physical activity. Research Quarterly for Exercise & Sport, 84(1), 5967. https://doi.org/10.1080/02701367.2013.762294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., Beets, M.W., Welk, G.J., Kim, Y., Beets, M.W., & Welk, G.J. (2012). Everything you wanted to know about selecting the “right” ActiGraph accelerometer cut-points for youth, but . . .: A systematic review. Journal of Science & Medicine in Sport, 15(4), 311321. https://doi.org/10.1016/j.jsams.2011.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E.Y., Hesketh, K.D., Hunter, S., Kuzik, N., Rhodes, R.E., Rinaldi, C.M., Spence, J.C., & Carson, V. (2017). Meeting new Canadian 24-hour movement guidelines for the early years and associations with adiposity among toddlers living in Edmonton, Canada. BMC Public Health, 17, 840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leeger-Aschmann, C.S., Schmutz, E.A., Zysset, A.E., Kakebeeke, T.H., Messerli-Burgy, N., Stulb, K., Arhab, A., Meyer, A.H., Munsch, S., Jenni, O.G., Puder, J.J., & Kriemler, S. (2019). Accelerometer-derived physical activity estimation in preschoolers—Comparison of cut-point sets incorporating the vector magnitude vs the vertical axis. BMC Public Health, 19(1), 513. https://doi.org/10.1186/s12889-019-6837-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppanen, M.H., Kaseva, K., Pajulahti, R., Saaksjarvi, K., Makynen, E., Engberg, E., Ray, C., Erkkola, M., Sajaniemi, N., & Roos, E. (2021). Temperament, physical activity and sedentary time in preschoolers—The DAGIS study. BMC Pediatrics, 21(1), 129. https://doi.org/10.1186/s12887-021-02593-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Määttä, S., Konttinen, H., de Oliveira Figueiredo, R.A., Haukkala, A., Sajaniemi, N., Erkkola, M., & Roos, E. (2020). Individual-, home- and preschool-level correlates of preschool children’s sedentary time. BMC Pediatrics, 20(1), 114. https://doi.org/10.1186/s12887-020-1948-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-Gonzalez, J., Lof, M., Labayen, I., Ruiz, J.R., & Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. https://doi.org/10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myatt, M., & Guevarra, E. (2019). Zscorer: Child antrhopometry z-score calculator. R package (version 0.3.1.). https://CRAN.R-project.org/package=zscorer

    • Search Google Scholar
    • Export Citation
  • Oliver, M., Schofield, G.M., & Kolt, G.S. (2007). Physical activity in preschoolers: Understanding prevalence and measurement issues. Sports Medicine, 37(12), 10451070. https://doi.org/10.2165/00007256-200737120-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pate, R.R., Almeida, M.J., McIver, K.L., Pfeiffer, K.A., & Dowda, M. (2006). Validation and calibration of an accelerometer in preschool children. Obesity, 14(11), 20002006. https://doi.org/10.1038/oby.2006.234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penpraze, V., Reilly, J., Maclean, C.M., Montgomery, C., Kelly, L., Paton, J.Y., Aitchison, T., & Grant, S. (2006). Monitoring of physical activity in young children: How much is enough? Pediatric Exercise Science, 18(4), 483491. https://doi.org/http://dx.doi.org/10.1123/pes.18.4.483

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeiffer, K.A., Dowda, M., McIver, K.L., & Pate, R.R. (2009). Factors related to objectively measured physical activity in preschool children. Pediatric Exercise Science, 21(2), 196208. https://doi.org/10.1123/pes.21.2.196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, L.R., Parfitt, G., & Rowlands, A.V. (2013). Calibration of the genea accelerometer for assessment of physical activity intensity in children. Journal of Science and Medicine in Sport, 16(2), 124128. https://doi.org/10.1016/j.jsams.2012.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poitras, V.J., Gray, C.E., Borghese, M.M., Carson, V., Chaput, J.P., Janssen, I., Katzmarzyk, P.T., Pate, R.R., Connor Gorber, S., Kho, M.E., Sampson, M., & Tremblay, M.S. (2016). Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Applied Physiology, Nutrition and Metabolism, 41(6, Suppl. 3), S197S239. https://doi.org/10.1139/apnm-2015-0663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulsford, R.M., Cortina-Borja, M., Rich, C., Kinnafick, F.-E., Dezateux, C., & Griffiths, L.J. (2011). ActiGraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children. PLoS One, 6(8), Article e21822. https://doi.org/10.1371/journal.pone.0021822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puyau, M., Adolph, A.L., Firoz, A.V., & Butte, N.F. (2002). Validation and calibration of physical activity monitors in children. Obesity Research, 10, 150157. https://doi.org/10.1038/oby.2002.24

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • Ravagnani, F.C.P., Coelho-Ravagnani, C.F., Brazendale, K., Weaver, R.G., Bornstein, D.B., & Beets, M.W. (2017). Application of the Rosetta stone to understand how much MVPA preschoolers accumulate: A systematic review [Review Systematic Review]. Journal of Science & Medicine in Sport, 20(9), 849855. https://doi.org/10.1016/j.jsams.2017.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, J.J. (2010). Low levels of objectively measured physical activity in preschoolers in child care. Medicine & Science in Sports & Exercise, 42(3), 502507. https://doi.org/10.1249/MSS.0b013e3181cea100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roscoe, C.M.P., James, R.S., & Duncan, M.J. (2017). Calibration of GENEActiv accelerometer wrist cut-points for the assessment of physical activity intensity of preschool aged children. European Journal of Pediatrics, 176(8), 10931098. https://doi.org/10.1007/s00431-017-2948-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeh, A., Sharkey, M., & Carskadon, M.A. (1994). Activity-based sleep-wake identification: An empirical test of methodological issued. Sleep, 17(3), 201207. https://doi.org/0.1093/sleep/17.3.201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirard, J.R., Trost, S.G., Pfeffer, K.A., Dowda, M., & Pate, R.R. (2005). Calibration and evaluation of an objective measure of physical activity in preschool children. Journal of Physical Activity & Health, 3, 345357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmons, B.W., Leblanc, A.G., Carson, V., Connor Gorber, S., Dillman, C., Janssen, I., Kho, M.E., Spence, J.C., Stearns, J.A., & Tremblay, M.S. (2012). Systematic review of physical activity and health in the early years (aged 0–4 years). Applied Physiology, Nutrition and Metabolism, 37(4), 773792. https://doi.org/10.1139/h2012-070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Carson, V., Chaput, J.P., Connor Gorber, S., Dinh, T., Duggan, M., Faulkner, G., Gray, C.E., Gruber, R., Janson, K., Janssen, I., Katzmarzyk, P.T., Kho, M.E., Latimer-Cheung, A.E., LeBlanc, C., Okely, A.D., Olds, T., Pate, R.R., Phillips, A., . . . Zehr, L. (2016). Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Applied Physiology, Nutrition and Metabolism, 41(6, Suppl. 3), S311S327. https://doi.org/10.1139/apnm-2016-0151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Chaput, J.P., Adamo, K.B., Aubert, S., Barnes, J.D., Choquette, L., Duggan, M., Faulkner, G., Goldfield, G.S., Gray, C.E., Gruber, R., Janson, K., Janssen, I., Janssen, X., Jaramillo Garcia, A., Kuzik, N., LeBlanc, C., MacLean, J., Okely, A.D., . . . Carson, V. (2017). Canadian 24-hour movement guidelines for the early years (0–4 years): An integration of physical activity, sedentary behaviour, and sleep. BMC Public Health, 17(Suppl. 5), 874. https://doi.org/10.1186/s12889-017-4859-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., Fees, B.S., Haar, S.J., Murray, A.D., & Crowe, L.K. (2012). Identification and validity of accelerometer cut-points for toddlers. Obesity, 20(11), 23172319. https://doi.org/10.1038/oby.2011.364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Barreira, T.V., Schuna, J.M., Mire, E.F., & Katzmarzyk, P.T. (2014). Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate form 24-h physical activity or sedentary behaviours. Applied Physiology, Nutrition and Metabolism, 39(1), 5357. https://doi.org/apnm-2019-0969apnm-2013-0173

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Cauwenberghe, E., Labarque, V., Trost, S.G., de Bourdeaudhuij, I., & Cardon, G. (2011). Calibration and comparison of accelerometer cut points in preschool children. International Journal of Pediatric Obesity, 6(2), e582589. https://doi.org/10.3109/17477166.2010.526223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2010). Global recommendations on physical activity for health.

  • World Health Organization. (2019). Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age.

All Time Past Year Past 30 Days
Abstract Views 3077 460 39
Full Text Views 186 160 16
PDF Downloads 92 53 6