A Comparison of Wrist- Versus Hip-Worn ActiGraph Sensors for Assessing Physical Activity in Adults: A Systematic Review

in Journal for the Measurement of Physical Behaviour

Click name to view affiliation

Nolan GallDivision of Physical Medicine and Rehabilitation, Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA

Search for other papers by Nolan Gall in
Current site
Google Scholar
PubMed
Close
,
Ruopeng SunDivision of Physical Medicine and Rehabilitation, Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA

Search for other papers by Ruopeng Sun in
Current site
Google Scholar
PubMed
Close
*
, and
Matthew SmuckDivision of Physical Medicine and Rehabilitation, Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA

Search for other papers by Matthew Smuck in
Current site
Google Scholar
PubMed
Close
Restricted access

Introduction: Wrist-worn accelerometer has gained popularity recently in commercial and research use for physical activity tracking. Yet, no consensus exists for standardized wrist-worn data processing, and physical activity data derived from wrist-worn accelerometer cannot be directly compared with data derived from the historically used hip-worn accelerometer. In this work, through a systematic review, we aim to identify and analyze discrepancies between wrist-worn versus hip-worn ActiGraph accelerometers in measuring adult physical activity. Methods: A systematic review was conducted on studies involving free-living data comparison between hip- and wrist-worn ActiGraph accelerometers among adult users. We assessed the population, study protocols, data processing criteria (axis, epoch, wear-time correction, etc.), and outcome measures (step count, sedentary activity time, moderate-to-vigorous physical activity, etc.). Step count and activity count discrepancy were analyzed using meta-analysis, while meta-analysis was not attempted for others due to heterogeneous data processing criteria among the studies. Results: We screened 235 studies with 19 studies qualifying for inclusion in the systematic review. Through meta-analysis, the wrist-worn sensor recorded, on average, 3,537 steps/day more than the hip-worn sensor. Regarding sedentary activity time and moderate-to-vigorous physical activity estimation, the wrist sensor consistently overestimates moderate-to-vigorous physical activity time while underestimating sedentary activity time, with discrepancies ranging from a dozen minutes to several hours. Discussions: Our findings quantified the substantial discrepancies between wrist and hip sensors. It calls attention to the need for a cautious approach to interpreting data from different wear locations. These results may also serve as a reference for data comparisons among studies using different sensor locations.

Gall and Sun are co-first authors. Sun (rusun@stanford.edu) is corresponding author, https://orcid.org/0000-0003-0738-3721

Supplementary Materials

    • Supplementary Material (PDF 196 KB)
  • Collapse
  • Expand
  • Au-Yeung, W.-T.M., Kaye, J.A., & Beattie, Z. (2020). Step count standardization: Validation of step counts from the withings activite using PiezoRxD and wGT3X-BT [Paper presentation]. The 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society.  Montreal, QC, Canada, July 20-24, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianchim, M.S., McNarry, M.A., Larun, L., & Mackintosh, K.A. (2019). Calibration and validation of accelerometry to measure physical activity in adult clinical groups: A systematic review. Preventive Medicine Reports, 16, Article 101001. https://doi.org/10.1016/j.pmedr.2019.101001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brazendale, K., Beets, M.W., Rowlands, A.V., Chandler, J.L., Fairclough, S.J., Boddy, L.M., . . . Downs, S.J. (2018). Converting between estimates of moderate-to-vigorous physical activity derived from raw accelerations measured at the wrist and from ActiGraph counts measured at the hip: The Rosetta Stone. Journal of Sports Sciences, 36(22), 26032607. https://doi.org/10.1080/02640414.2018.1470373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bull, F.C., Al-Ansari, S.S., Biddle, S., Borodulin, K., Buman, M.P., Cardon, G., . . . Chou, R. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 14511462.

    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention (CDC). (2021). Benefits of physical activity.

  • Choi, L., Ward, S.C., Schnelle, J.F., & Buchowski, M.S. (2012). Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Medicine and Science in Sport and Exercise, 44(10), 2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., & Montoye, A.H.K. (2020). Cross-generational comparability of hip- and wrist-worn ActiGraph GT3X+, wGT3X-BT, and GT9X accelerometers during free-living in adults. Journal of Sports Sciences, 38(24), 27942802. https://doi.org/10.1080/02640414.2020.1801320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J.E., Yang, H.Y., Trentadue, T.P., Gong, Y., & Losina, E. (2019). Validation of the Fitbit charge 2 compared to the ActiGraph GT3X+ in older adults with knee osteoarthritis in free-living conditions. PLoS One, 14(1), Article e0211231. https://doi.org/10.1371/journal.pone.0211231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooke, A.B., Daskalopoulou, S.S., & Dasgupta, K. (2018). The impact of accelerometer wear location on the relationship between step counts and arterial stiffness in adults treated for hypertension and diabetes. Journal of Science and Medicine in Sport, 21(4), 398403. https://doi.org/10.1016/j.jsams.2017.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieu, O., Mikulovic, J., Fardy, P.S., Bui-Xuan, G., Béghin, L., & Vanhelst, J. (2017). Physical activity using wrist-worn accelerometers: Comparison of dominant and non-dominant wrist. Clinical Physiology and Functional Imaging, 37(5), 525529. https://doi.org/10.1111/cpf.12337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G. (2016). Hip and wrist accelerometer algorithms for free-living behavior classification. Medicine & Science in Sports & Exercise, 48(5), 933940. https://doi.org/10.1249/MSS.0000000000000840

    • Search Google Scholar
    • Export Citation
  • Hildebrand, M., Hansen, B.H., van Hees, V.T., & Ekelund, U. (2017). Evaluation of raw acceleration sedentary thresholds in children and adults. Journal of Medicine, 27(12), 18141823. https://doi.org/10.1111/sms.12795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höchsmann, C., Knaier, R., Infanger, D., & Schmidt-Trucksäss, A. (2020). Validity of smartphones and activity trackers to measure steps in a free-living setting over three consecutive days. Physiological Measurement, 41(1), Article 015001. https://doi.org/10.1088/1361-6579/ab635f

    • Search Google Scholar
    • Export Citation
  • Hongyong, D. (2021). A Python module of meta-analysis, usually applied in systematic reviews of evidence-based medicine (version 1.26). www.pymeta.com

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamada, M., Shiroma, E.J., Harris, T.B., & Lee, I.-M. (2016). Comparison of physical activity assessed using hip- and wrist-worn accelerometers. Gait & Posture, 44, 2328. https://doi.org/10.1016/j.gaitpost.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, J., Marinac, C.R., Ellis, K., Godbole, S., Hipp, A., Glanz, K., . . . Berrigan, D. (2017). Comparison of accelerometry methods for estimating physical activity. Medicine & Science in Sports & Exercise, 49(3), 617624. https://doi.org/10.1249/MSS.0000000000001124

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsley, M.I.C., Nawaratne, R., O’Halloran, P.D., Montoye, A.H.K., Alahakoon, D., De Silva, D., . . . Nicholson, M. (2019). Wrist-specific accelerometry methods for estimating free-living physical activity. Journal of Science and Medicine in Sport, 22(6), 677683. https://doi.org/10.1016/j.jsams.2018.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaier, R., Höchsmann, C., Infanger, D., Hinrichs, T., & Schmidt-Trucksäss, A. (2019). Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X+. BMC Public Health, 19(1), 244. https://doi.org/10.1186/s12889-019-6568-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, A., Shiroma, E.J., Caserotti, P., Matthews, C.E., Chen, K.Y., Glynn, N.W., & Harris, T.B. (2016). Comparison of sedentary estimates between activPAL and hip- and wrist-worn actigraph. Medicine & Science in Sports & Exercise, 48(8), 15141522. https://doi.org/10.1249/MSS.0000000000000924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandigout, S., Lacroix, J., Perrochon, A., Svoboda, Z., Aubourg, T., & Vuillerme, N. (2019). Comparison of step count assessed using wrist- and hip-worn actiGraph GT3X in free-living conditions in young and older adults. Frontiers in Medicine, 6, 252. https://doi.org/10.3389/fmed.2019.00252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E. (2005). Calibration of accelerometer output for adults. Medicine & Science in Sports & Exercise, 37(11, Suppl. 1), S512S522. https://doi.org/10.1249/01.mss.0000185659.11982.3d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., . . . Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845. https://doi.org/10.1007/s40279-017-0716-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Rowlands, A.V., Henriksson, P., Shiroma, E.J., Acosta, F.M., . . . Ortega, F.B. (2019). Comparability of accelerometer signal aggregation metrics across placements and dominant wrist cut points for the assessment of physical activity in adults. Scientific Reports, 9(1), Article 18235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Rowlands, A.V., Huber, F., Sabia, S., & van Hees, V.T. (2019). GGIR: A research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. Journal for the Measurement of Physical Behaviour, 2(3), 188196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikkelsen, M.-L.K., Berg-Beckhoff, G., Frederiksen, P., Horgan, G., O’Driscoll, R., Palmeira, A.L., . . . Larsen, S.C. (2020). Estimating physical activity and sedentary behaviour in a free-living environment: A comparative study between Fitbit Charge 2 and ActiGraph GT3X. PLoS One, 15(6), Article e0234426. https://doi.org/10.1371/journal.pone.0234426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., . . . Group, P.-P. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, Article 1. https://doi.org/10.1186/2046-4053-4-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Clevenger, K.A., Pfeiffer, K.A., Nelson, M.B., Bock, J.M., Imboden, M.T., & Kaminsky, L.A. (2020). Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. Journal of Sports Sciences, 38(22), 25692578. https://doi.org/10.1080/02640414.2020.1794244

    • Search Google Scholar
    • Export Citation
  • Montoye, A.H., Pivarnik, J.M., Mudd, L.M., Biswas, S., & Pfeiffer, K.A. (2016). Validation and comparison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior. AIMS Public Health, 3(2), 298312. https://doi.org/10.3934/publichealth.2016.2.298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschelli, J. (2022). Summarized ActiGraphy: Coerce ‘ActiGraphy’ to summarized experiments. R package version 0.5.0. https://github.com/muschellij2/SummarizedActiGraphy

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nawaratne, R., Alahakoon, D., De Silva, D., O’Halloran, P.D., Montoye, A.H., Staley, K., . . . Kingsley, M.I. (2021). Deep learning to predict energy expenditure and activity intensity in free living conditions using wrist-specific accelerometry. Journal of Sports Sciences, 39(6), 683690. https://doi.org/10.1080/02640414.2020.1841394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V., Cliff, D.P., Fairclough, S.J., Boddy, L.M., Olds, T.S., Parfitt, G., . . . Beets, M.W. (2016). Moving forward with backward compatibility: Translating wrist accelerometer data. Medicine & Science in Sports & Exercise, 48(11), 21422149. http://dx.doi.org/10.1249/MSS.0000000000001015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnova, E., Leroux, A., Cao, Q., Tabacu, L., Zipunnikov, V., Crainiceanu, C., & Urbanek, J.K. (2020). The predictive performance of objective measures of physical activity derived from accelerometry data for 5-year all-cause mortality in older adults: National health and nutritional examination survey 2003–2006. The Journals of Gerontology: Series A, 75(9), 17791785. https://doi.org/10.1093/gerona/glz193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D.M., DeCaro, J.A., Murphy, S.L., & Parmelee, P.A. (2019). Momentary reports of fatigue predict physical activity level: Wrist, waist, and combined accelerometry. Journal of Aging and Health, 32(9), 921925. https://doi.org/10.1177/0898264319863609

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smuck, M., Tomkins-Lane, C., Ith, M.A., Jarosz, R., & Kao, M.-C.J. (2017). Physical performance analysis: A new approach to assessing free-living physical activity in musculoskeletal pain and mobility-limited populations. PLoS One, 12(2), Article e0172804. https://doi.org/10.1371/journal.pone.0172804

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, R., Tomkins-Lane, C., Muaremi, A., Kuwabara, A., & Smuck, M. (2021). Physical activity thresholds for predicting longitudinal gait decline in adults with knee osteoarthritis. Osteoarthritis and Cartilage, 29(7), 965972. https://doi.org/10.1016/j.joca.2021.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Berrigan, D., Dodd, K.W., Masse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sport and Exercise, 40(1), 181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Barreira, T.V., & Schuna, J.M. (2015). Comparison of step outputs for waist and wrist accelerometer attachment sites. Medicine & Science in Sports & Exercise, 47(4), 839842. https://doi.org/10.1249/MSS.0000000000000476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudor-Locke, C., Barreira, T.V., Schuna, J.M., Mire, E.F., Chaput, J.-P., Fogelholm, M., . . . ISCOLE Research Group. (2015). Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). International Journal of Behavioral Nutrition and Physical Activity, 12(1), 11. https://doi.org/10.1186/s12966-015-0172-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Mänttäri, A., Vuorimaa, T., Suni, J., & Sievänen, H. (2015). Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PLoS One, 10(8), Article e0134813. https://doi.org/10.1371/journal.pone.0134813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, J.M., Ekelund, U., Besson, H., Mezzani, A., Geladas, N., Vanhees, L., & Panel, E. (2010). Assessment of physical activity—A review of methodologies with reference to epidemiological research: A report of the exercise physiology section of the European association of cardiovascular prevention and rehabilitation. European Journal of Cardiovascular Prevention and Rehabilitation, 17(2), 127139. https://doi.org/10.1097/HJR.0b013e32832ed875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, K.M., Zhang, D., Pettee Gabriel, K., Ahrens, M., Sternfeld, B., Sidney, S., . . . Yaffe, K. (2021). Longitudinal associations of midlife accelerometer determined sedentary behavior and physical activity with cognitive function: The CARDIA study. Journal of the American Heart Association, 10(3), Article e018350. https://doi.org/10.1161/JAHA.120.018350

    • Search Google Scholar
    • Export Citation
  • Wijndaele, K., Westgate, K., Stephens, S.K., Blair, S.N., Bull, F.C., Chastin, S.F.M., . . . Healy, G.N. (2015). Utilization and harmonization of adult accelerometry data: Review and expert consensus. Medicine & Science in Sports & Exercise, 47(10), 21292139. https://doi.org/10.1249/MSS.0000000000000661

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1140 1140 169
Full Text Views 27 27 5
PDF Downloads 43 43 8