A Walkthrough of ActiGraph Counts

Click name to view affiliation

Ali Neishabouri ActiGraph, Pensacola, FL, USA

Search for other papers by Ali Neishabouri in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0259-5645 *
,
Joe Nguyen ActiGraph, Pensacola, FL, USA

Search for other papers by Joe Nguyen in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Patterson ActiGraph, Pensacola, FL, USA

Search for other papers by Matthew R. Patterson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9774-4094
,
Rakesh Pilkar ActiGraph, Pensacola, FL, USA

Search for other papers by Rakesh Pilkar in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3433-9913
, and
Christine C. Guo ActiGraph, Pensacola, FL, USA

Search for other papers by Christine C. Guo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1530-0172
Restricted access

Activity counts have been used for over two decades with over 22,000 published scientific papers in public health and clinical research. ActiGraph recently released the algorithm for computing counts from raw accelerometer data as an open-source Python library, which is now ported by researchers to other languages, notably R. The current commentary presents historical overview of ActiGraph counts, and its development and evolution as a measure of physical activity. Further, we provide general recommendations on extracting counts from raw accelerometer data and discuss specific considerations with respect to device types, resampling, nonwear, axes orientations, and epoch length that may influence counts. Last, we provide a tutorial on how to use ActiGraph’s open-source Python library, agcounts, for consistent, accurate, and reproducible count. We expect this commentary will provide familiarity and transparency needed to adopt and produce activity counts in a consistent manner, allowing researchers to conduct statistical comparisons across multiple data sets and studies.

  • Collapse
  • Expand
  • ActiGraph Link device orientation (Serial numbers starting with TAS). (n.d.). Retrieved September 27, 2023, from https://actigraphcorp.my.site.com/support/s/article/ActiGraph-Link-device-orientation-Serial-numbers-starting-with-TAS

    • Search Google Scholar
    • Export Citation
  • Brage, S., Brage, N., Wedderkopp, N., & Froberg, K. (2003). Reliability and validity of the computer science and applications accelerometer in a mechanical setting. Measurement in Physical Education and Exercise Science, 7(2), 101119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brønd, J.C., & Arvidsson, D. (2016). Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. Journal of Applied Physiology, 120(3), 362369.

    • Search Google Scholar
    • Export Citation
  • Cain, K.L., Conway, T.L., Adams, M.A., Husak, L.E., & Sallis, J.F. (2013). Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. International Journal of Behavioral Nutrition and Physical Activity, 10(1), Article 51.

    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS). (n.d.). National health and nutrition examination survey data. Retrieved April 4, 2024, from https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2011

    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise., 43(2), 357364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., Mackintosh, K.A., McNarry, M.A., Brønd, J., Arvidsson, D., & Montoye, A.H.K. (2019). Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children. Physiological Measurement, 40, Article 095008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clevenger, K.A., Pfeiffer, K.A., Montoye, A.H.K. (2020). Cross-generational comparability of hip- and wrist-worn ActiGraph GT3X+, wGT3X-BT, and GT9X accelerometers during free-living in adults. Journal of Sports Sciences, 38(24), 27942802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, R.J., Kripke, D.F., Gruen, W., Mullaney, D.J., & Gillin, J.C. (1992). Automatic sleep/wake identification from wrist activity. Sleep, 15(5), 461469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Flynn, J.I., & Bassett, D.R. (2015). Estimating physical activity in youth using a wrist accelerometer. Medicine & Science in Sports & Exercise. 47(5), 944951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P.S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, Inc. accelerometer. Medicine & Science in Sports & Exercise, 30(5), 777781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, Article 267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grydeland, M., Hansen, B.H., Ried-Larsen, M., Kolle, E., & Anderssen, S.A. (2014). Comparison of three generations of ActiGraph activity monitors under free-living conditions: Do they provide comparable assessments of overall physical activity in 9-year old children? BMC Sports Science Medicine and Rehabilitation, 6(1), Article 26.

    • Search Google Scholar
    • Export Citation
  • GT3X+ and wGT3X+ device orientation (Serial numbers starting with NEO, CLE1 and CLE2). (n.d.). Retrieved September 27, 2023, from https://actigraphcorp.my.site.com/support/s/article/GT3X-and-wGT3X-device-orientation-Serial-numbers-starting-with-NEO-CLE1-and-CLE2

    • Search Google Scholar
    • Export Citation
  • Harris, C.R., Jarrod Millman, K., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., . . . Oliphant, T.E. (2020). Array programming with NumPy. Nature, 585(7825), Article 7825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karas, M., Muschelli, J., Leroux, A., Urbanek, J.K., Wanigatunga, A.A., Bai, J., Crainiceanu, C.M., & Schrack, J.A. (2022). Comparison of accelerometry-based measures of physical activity: Retrospective observational data analysis study. JMIR MHealth UHealth, 10(7), Article e38077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kettle, V.E., Madigan, C.D., Coombe, A., Graham, H., Thomas, J.J.C., Chalkley, A.E., & Daley, A.J. (2022). Effectiveness of physical activity interventions delivered or prompted by health professionals in primary care settings: Systematic review and meta-analysis of randomised controlled trials. BMJ, 376, Article e068465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaier, R., Höchsmann, C., Infanger, D., Hinrichs, T., & Schmidt-Trucksäss, A. (2019). Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X+. BMC Public Health, 19(1), Article 244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melanson, E.L., & Freedson, P.S. (1995). Validity of the computer science and applications, Inc. (CSA) activity monitor. Medicine & Science in Sports & Exercise. 27(6), 934940.

    • Search Google Scholar
    • Export Citation
  • Migueles, J.H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., Labayen, I., Ruiz, J.R., & Ortega, F.B. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Medicine, 47(9), 18211845.

    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Clevenger, K.A., Pfeiffer, K.A., Nelson, M.B., Bock, J.M., Imboden, M.T., & Kaminsky, L.A. (2020). Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. Journal of Sports Science, 38(22), 25692578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montoye, A.H.K., Nelson, M.B., Bock, J.M., Imboden, M.T., Kaminsky, L.A., Mackintosh, K.A., McNarry, M.A., & Pfeiffer, K.A. (2018). Raw and count data comparability of hip-worn ActiGraph GT3X+ and link accelerometers. Medicine & Science in Sports & Exercise, 50(5), 11031112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neishabouri, A., Nguyen, J., Samuelsson, J., Guthrie, T., Biggs, M., Wyatt, J., Cross, D., Karas, M., Migueles, J.H., Khan, S., & Guo, C.C. (2022). Quantification of acceleration as activity counts in ActiGraph wearables. Scientific Reports, 12(1), Article 1195.

    • Search Google Scholar
    • Export Citation
  • Nunes, A.S., Patterson, M.R., Gerstel, D., Khan, S., Guo, C.C., & Neishabouri, A. (2022). Domain adversarial convolutional neural network improves the accuracy and generalizability of wearable-based sleep assessment technology. ResearchSquare. Advance online publication.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nyquist, H. (1928). Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers. 47(2), 617644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, M.R., Nunes, A.A.S., Gerstel, D., Pilkar, R., Guthrie, T., Neishabouri, A., & Guo, C.C. (2023). 40 years of actigraphy in sleep medicine and current state of the art algorithms. NPJ Digital Medicine, 6(1), Article 51.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puyau, M.R., Adolph, A.L., Vohra, F.A., & Butte, N.F. (2002). Validation and calibration of physical activity monitors in children. Obesity Reserach, 10(3), 150157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ried-Larsen, M., Brønd, J.C., Brage, S., Hansen, B.H., Grydeland, M., Andersen, L.B., & Møller, N.C. (2012). Mechanical and free living comparisons of four generations of the Actigraph activity monitor. International Journal of Behavioral Nutrition and Physical Activity, 9, Article 113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeh, A., Sharkey, K.M., & Carskadon, M.A. (1994). Activity-based sleep–wake identification: An empirical test of methodological issues. Sleep, 17(3), 201207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, J.E., John, D., & Freedson, P.S. (2011). Validation and comparison of ActiGraph activity monitors. Journal of Science and Medicine Sport, 14(5), 411416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulman, J.J., & Reisman, J.M. (1959). An objective measure of hyperactivity. American Journal of Mental Deficiency, 64, 455456.

  • Troiano, R.P., Berrigan, D., Dodd, K.W., Mâsse, L.C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine & Science in Sports & Exercise, 40(1), 181188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tryon, W.W., & Williams, R. (1996). Fully proportional actigraphy: A new instrument. Behavior Research Methods, Instruments, & Computers, 28(3), 392403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V.T., Gorzelniak, L., Dean León, E.C., Eder, M., Pias, M., Taherian, S., Ekelund, U., Renström, F., Franks, P.W., Horsch, A., & Brage, S. (2013). Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS One, 8(4), Article e61691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Rossum, G., & Drake, F.L. (2009). Python 3 reference manual. CreateSpace.

  • Vert, A., Weber, K.S., Thai, V., Turner, E., Beyer, K.B., Cornish, B.F., Godkin, F.E., Wong, C., McIlroy, W.E., & Van Ooteghem, K. (2022). Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature. BMC Medical Research Methodology, 22(1), Article 147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • wActiSleep-BT device orientation (Serial Numbers Starting with MOS4). (n.d.). Retrieved September 27, 2023, from https://actigraphcorp.my.site.com/support/s/article/wActiSleep-BT-device-orientation-Serial-Numbers-Starting-with-MOS4

    • Search Google Scholar
    • Export Citation
  • Zhou, S.M., Hill, R.A., Morgan, K., Stratton, G., Gravenor, M.B., Bijlsma, G., & Brophy, S. (2015). Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. BMJ Open, 5(5), Article e007447.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 187 187 187
Full Text Views 19 19 19
PDF Downloads 6 6 6