Network Harmonization of Physical Activity Variables Through Indirect Validation

in Journal for the Measurement of Physical Behaviour
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $37.00

1 year subscription

USD $50.00

Student 2 year subscription

USD $71.00

2 year subscription

USD $93.00

Harmonization of data for pooled analysis relies on the principle of inferential equivalence between variables from different sources. Ideally, this is achieved using models of the direct relationship with gold standard criterion measures, but the necessary validation study data are often unavailable. This study examines an alternative method of network harmonization using indirect models. Starting methods were self-report or accelerometry, from which we derived indirect models of relationships with doubly labelled water (DLW)-based physical activity energy expenditure (PAEE) using sets of two bridge equations via one of three intermediate measures. Coefficients and performance of indirect models were compared to corresponding direct models (linear regression of DLW-based PAEE on starting methods). Indirect model beta coefficients were attenuated compared to direct model betas (10%–63%), narrowing the range of PAEE values; attenuation was greater when bridge equations were weak. Directly and indirectly harmonized models had similar error variance but most indirectly derived values were biased at group-level. Correlations with DLW-based PAEE were identical after harmonization using continuous linear but not categorical models. Wrist acceleration harmonized to DLW-based PAEE via combined accelerometry and heart rate sensing had the lowest error variance (24.5%) and non-significant mean bias 0.9 (95%CI: −1.6; 3.4) kJ·day−1·kg−1. Associations between PAEE and BMI were similar for directly and indirectly harmonized values, but most fell outside the confidence interval of the criterion PAEE-to-BMI association. Indirect models can be used for harmonization. Performance depends on the measurement properties of original data, variance explained by available bridge equations, and similarity of population characteristics.

The authors are with the MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.

Pearce (matthew.pearce@mrc-epid.cam.ac.uk) is corresponding author.
Journal for the Measurement of Physical Behaviour
Article Sections
References
  • AinsworthB.E.HaskellW.L.HerrmannS.D.MeckesN.Bassett Jr.D.R.Tudor-LockeC. . . . LeonA.S. (2011). 2011 Compendium of Physical Activities: a second update of codes and MET values. Medicine & Science in Sports & Exercise 43(8) 15751581. PubMed ID: 21681120 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AtkinA.J.BiddleS.J.H.BroylesS.T.ChinapawM.EkelundU.EsligerD.W. . . . van SluijsE.M.F. (2017). Harmonising data on the correlates of physical activity and sedentary behaviour in young people: methods and lessons learnt from the international Children’s Accelerometry database (ICAD). International Journal of Behavioral Nutrition and Physical Activity 14(1) 174. PubMed ID: 29262830 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AuneD.NoratT.LeitzmannM.TonstadS. & VattenL.J. (2015). Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. European Journal of Epidemiology 30(7) 529542. PubMed ID: 26092138 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BessonH.BrageS.JakesR.W.EkelundU. & WarehamN.J. (2010). Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. The American Journal of Clinical Nutrition 91(1) 106114. PubMed ID: 19889820 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrageS.BrageN.FranksP.W.EkelundU. & WarehamN.J. (2005). Reliability and validity of the combined heart rate and movement sensor Actiheart. European Journal of Clinical Nutrition 59(4) 561570. PubMed ID: 15714212 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrageS.BrageN.FranksP.W.EkelundU.WongM.Y.AndersenL.B. . . . WarehamN.J. (2004). Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. Journal of Applied Physiology 96(1) 343351. PubMed ID: 12972441 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrageS.EkelundU.BrageN.HenningsM.A.FrobergK.FranksP.W. & WarehamN.J. (2007). Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. Journal of Applied Physiology 103(2) 682692. PubMed ID: 17463305 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrageS.WestgateK.FranksP.W.StegleO.WrightA.EkelundU. & WarehamN.J. (2015). Estimation of free-living energy expenditure by heart rate and movement sensing: a doubly-labelled water study. PLoS ONE 10(9) e0137206. PubMed ID: 26349056 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EliaM. & LiveseyG. (1988). Theory and validity of indirect calorimetry during net lipid synthesis. The American Journal of Clinical Nutrition. doi:

  • FortierI.BurtonP.R.RobsonP.J.FerrettiV.LittleJ.L’HeureuxF. . . . HudsonT.J. (2010). Quality, quantity and harmony: the DataSHaPER approach to integrating data across bioclinical studies. International Journal of Epidemiology 39(5) 13831393. PubMed ID: 20813861 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoldbergG.R.PrenticeA.M.DaviesH.L. & MurgatroydP.R. (1988). Overnight and basal metabolic rates in men and women. European Journal of Clinical Nutrition 42(2) 137144. PubMed ID: 3378547

    • Search Google Scholar
    • Export Citation
  • GolubicR.MayA.M.Benjaminsen BorchK.OvervadK.CharlesM.-A.DiazM.J.T. . . . BrageS. (2014). Validity of electronically administered recent physical activity questionnaire (RPAQ) in ten European countries. PLoS ONE 9(3) e92829. PubMed ID: 24667343 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GrandaP. & BlasczykE. (2011). Data harmonization. Guidelines for best practice in cross-cultural surveys. 3rd ed. Retrieved from http://ccsg.isr.umich.edu/index.php/chapters/data-harmonization-chapter

    • Search Google Scholar
    • Export Citation
  • HaugenH.A.MelansonE.L.TranZ.VKearneyJ.T. & HillJ.O. (2003). Variability of measured resting metabolic rate. The American Journal of Clinical Nutrition 78(6) 11411144. PubMed ID: 14668276 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HenryC.J. (2005). Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutrition 8(7A) 11331152. PubMed ID: 16277825 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JequierE. (2002). Pathways to obesity. International Journal of Obesity and Related Metabolic Disorders 26(Suppl. 2) S12S17. doi:

  • KeoghR.H. & WhiteI.R. (2014). A toolkit for measurement error correction, with a focus on nutritional epidemiology. Statistics in Medicine 33(12) 21372155. PubMed ID: 24497385 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KilpelainenT.O.QiL.BrageS.SharpS.J.SonestedtE.DemerathE. . . . LoosR.J. (2011). Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218, 166 adults and 19, 268 children. PLoS Med 8(11) e1001116. PubMed ID: 22069379 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LuG. & AdesA.E. (2004). Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine 23(20) 31053124. PubMed ID: 15449338 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NielsenS.HensrudD.D.RomanskiS.LevineJ.A.BurgueraB. & JensenM.D. (2000). Body composition and resting energy expenditure in humans: role of fat, fat-free mass and extracellular fluid. International Journal of Obesity and Related Metabolic Disorders 24(9) 11531157. PubMed ID: 11033984 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PetersT.BrageS.WestgateK.FranksP.W.GradmarkA.Tormo DiazM.J. . . . WarehamN. (2012). Validity of a short questionnaire to assess physical activity in 10 European countries. European Journal of Epidemiology 27(1) 1525. PubMed ID: 22089423 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchoellerD.A.RavussinE.SchutzY.AchesonK.J.BaertschiP. & JequierE. (1986). Energy expenditure by doubly labeled water: validation in humans and proposed calculation. American Journal of Physiology 250(5) R823R830. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpurrG.B.PrenticeA.M.MurgatroydP.R.GoldbergG.R.ReinaJ.C. & ChristmanN.T. (1988). Energy expenditure from minute-by-minute heart-rate recording: comparison with indirect calorimetry. The American Journal of Clinical Nutrition 48(3) 552559. PubMed ID: 3414570 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van HeesV.T.GorzelniakL.Dean LeonE.C.EderM.PiasM.TaherianS. . . . BrageS. (2013). Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 8(4) e61691. PubMed ID: 23626718 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WarehamN.J.JakesR.W.RennieK.L.SchuitJ.MitchellJ.HenningsS. & DayN.E. (2003). Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutrition 6(4) 407413. PubMed ID: 12795830 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WatsonL.P.Raymond-BarkerP.MoranC.SchoenmakersN.MitchellC.BluckL. . . . MurgatroydP.R. (2014). An approach to quantifying abnormalities in energy expenditure and lean mass in metabolic disease. European Journal of Clinical Nutrition 68(2) 234240. PubMed ID: 24281313 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WhiteT.WestgateK.HollidgeS.VenablesM.OlivierP.WarehamN. & BrageS. (2019). Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study. International Journal of Obesity . epub ahead of print. PubMed ID:30940917 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WhiteT.WestgateK.WarehamN.J. & BrageS. (2016). Estimation of physical activity energy expenditure during free-living from wrist accelerometry in UK adults. PLoS ONE 11(12) e0167472. PubMed ID: 27936024 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 19 19 19
Full Text Views 1 1 1
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar