Fast and Robust Algorithm for Detecting Body Posture Using Wrist-Worn Accelerometers

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Harvard University
  • 2 University of Pittsburgh
  • 3 Johns Hopkins University
  • 4 Indiana University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Background: The increasing popularity of wrist-worn accelerometers introduces novel challenges to the research on physical activity and sedentary behavior. Estimation of body posture is one such challenge. Methods: The authors proposed an approach called SedUp to differentiate between sedentary (sitting/lying) and standing postures. SedUp is based on the logistic regression classifier, using the wrist elevation and the motion variability extracted from raw accelerometry data collected on the axis parallel to the forearm. The authors developed and tested our method on data from N = 45 community-dwelling older adults. All subjects wore ActiGraph GT3X+ accelerometers on the left and right wrist, and activPAL was placed on the thigh in the free-living environment for 7 days. ActivPAL provided ground truth about body posture. The authors reported SedUp’s classification accuracy for each wrist separately. Results: Using the data from the left wrist, SedUp estimated the standing posture with median true positive rate = 0.83 and median true negative rate = 0.91. Using the data from the right wrist, SedUp estimated the standing posture with median true positive rate = 0.86 and median true negative rate = 0.93. Conclusions: SedUp provides accurate classification of body posture using wrist-worn accelerometers. The separate validation for each wrist allows for the application of SedUp in a wide spectrum of free-living studies.

Straczkiewicz is with the Department of Biostatistics, Harvard University, Boston, MA, USA. Glynn is with the Center for Aging and Population Health, Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. Zipunnikov is with the Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA. Harezlak is with the Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA.

Straczkiewicz (mstraczkiewicz@hsph.harvard.edu) is corresponding author.
  • Aggio, D., Wallace, K., Boreham, N., Shankar, A., Steptoe, A., & Hamer, M. (2017). Objectively measured daily physical activity and postural changes as related to positive and negative affect using ambulatory monitoring assessments. Psychosomatic Medicine, 79(7), 792797. PubMed ID: 28846993 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieu, O., Mikulovic, J., Fardy, P.S., Bui-Xuan, G., Beghin, L., & Vanhelst, J. (2017). Physical activity using wrist-worn accelerometers: Comparison of dominant and non-dominant wrist. Clinical Physiology and Functional Imaging, 37(5), 525529. PubMed ID: 26749436 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwardson, C.L., Winkler, E.A.H., Bodicoat, D.H., Yates, T., Davies, M.J., Dunstan, D.W., & Healy, G.N. (2017). Considerations when using the activPAL monitor in field-based research with adult populations. Journal of Sport and Health Science, 6(2), 162178. PubMed ID: 30356601 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedson, P.S., Lyden, K., Kozey-Keadle, S., & Staudenmayer, J. (2011). Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample. Journal of Applied Physiology, 111(6), 18041812. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gjoreski, M., Gjoreski, H., Lustrek, M., & Gams, M. (2016). How accurately can your wrist device recognize daily activities and detect falls? Sensors, 16(6), 800. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), 93:193:42. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karas, M., Bai, J., Strączkiewicz, M., Harezlak, J., Glynn, N.W., Harris, T., … Urbanek, J.K. (2019). Accelerometry data in health research: Challenges and opportunities: Review and examples. Statistics in Biosciences, 11(2), 210237. PubMed ID: 31762829 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilbreath, S.L., & Heard, R.C. (2005). Frequency of hand use in healthy older persons. The Australian Journal of Physiotherapy, 51(2), 119122. PubMed ID: 15924514 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lange-Maia, B.S., Newman, A.B., Strotmeyer, E.S., Harris, T.B., Caserotti, P., & Glynn, N.W. (2015). Performance on fast- and usual-paced 400-m walk tests in older adults: Are they comparable? Aging Clinical and Experimental Research, 27(3), 309314. PubMed ID: 25373610 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mannini, A., Rosenberger, M., Haskell, W.L., Sabatini, A.M., & Intille, S.S. (2017). Activity recognition in youth using single accelerometer placed at wrist or ankle. Medicine & Science in Sports & Exercise, 49(4), 801812. PubMed ID: 27820724 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V, Olds, T.S., Hillsdon, M., Pulsford, R., Hurst, T.L., Eston, R.G., … Langford, J. (2014). Assessing sedentary behavior with the GENEActiv: Introducing the sedentary sphere. Medicine & Science in Sports & Exercise, 46(6), 12351247. PubMed ID: 24263980 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V, Yates, T., Olds, T.S., Davies, M., Khunti, K., & Edwardson, C.L. (2016). Wrist-worn accelerometer-brand independent posture classification. Medicine & Science in Sports & Exercise, 48(4), 748754. PubMed ID: 26559451 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki J, Hickey, A., Staudenmayer, J., John, D., Kent, J., & Freedson, P. (2016). Performance of activity classification algorithms in free-living older adults. Medicine & Science in Sports & Exercise, 48(5), 941950. PubMed ID: 26673129 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiroma, E.J., Schepps, M.A., Harezlak, J., Chen, K.Y., Matthews, C.E., Koster, A., … Harris, T.B. (2016). Daily physical activity patterns from hip- and wrist-worn accelerometers. Physiological Measurement, 37(10), 18521861. PubMed ID: 27654140 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L., Hamer, M., Ucci, M., Marmot, A., Gardner, B., Sawyer, A., … Fisher, A. (2015). Weekday and weekend patterns of objectively measured sitting, standing, and stepping in a sample of office-based workers: The active buildings study. BMC Public Health, 15(1), 9. PubMed ID: 25595219 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straczkiewicz, M., Glynn, N.W., & Harezlak, J. (2019). On placement, location and orientation of wrist-worn tri-axial accelerometers during free-living measurements. Sensors, 19(9), 2095. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straczkiewicz, M., Urbanek, J.K., Fadel, W.F., Crainiceanu, C.M., & Harezlak, J. (2016). Automatic car driving detection using raw accelerometry data. Physiological Measurement, 37(10), 17571769. PubMed ID: 27653528 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A.E., … Chinapaw, M.J.M. (2017). Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 75. PubMed ID: 28599680 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., McClain, J.J., Brychta, R.J., & Chen, K.Y. (2014). Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine, 48(13), 10191023. PubMed ID: 24782483 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urbanek, J.K., Zipunnikov, V., Harris, T., Fadel, W., Glynn, N., Koster, A., … Harezlak, J. (2018). Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data. Physiological Measurement, 39(2), 02NT02. PubMed ID: 29329110 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V.T, Golubic, R., Ekelund, U., & Brage, S. (2013). Impact of study design on development and evaluation of an activity-type classifier. Journal of Applied Physiology, 114(8), 10421051. PubMed ID: 23429872 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V.T, Renstrom, F., Wright, A., Gradmark, A., Catt, M., Chen, K.Y., … Franks, P.W. (2011). Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS One, 6(7), e22922. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J.-Y., Chen, Y.-P., Lee, G.-Y., Liou, S.-N., & Wang, J.-S. (2007). Activity recognition using one triaxial accelerometer: A neuro-fuzzy classifier with feature reduction. In L. Ma, M. Rauterberg, & R. Nakatsu (Eds.), Entertainment computing—ICEC 2007 (pp. 395400). Berlin, Heidelberg: Springer Berlin Heidelberg.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., Rowlands, A.V, Murray, P., & Hurst, T.L. (2012). Physical activity classification using the GENEA wrist-worn accelerometer. Medicine & Science in Sports & Exercise, 44(4), 742748. PubMed ID: 21988935 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 353 353 169
Full Text Views 17 17 8
PDF Downloads 11 11 7