Bidirectional Day-to-Day Associations of Reported Sleep Duration With Accelerometer Measured Physical Activity and Sedentary Time Among Dutch Adolescents: An Observational Study

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Maastricht University
  • 2 The University of Texas Health Science Center (UTHealth) at Houston
  • 3 Children’s Health Andrews Institute for Orthopedics and Sports Medicine
  • 4 The University of Alabama at Birmingham
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Objectives: To examine the bidirectional association of sleep duration with proportions of time spent in physical behaviors among Dutch adolescents. Methods: Adolescents (n = 294, 11–15 years) completed sleep diaries and wore an accelerometer (ActiGraph) over 1 week. With linear mixed-effects models, the authors estimated the association of sleep categories (short, optimal, and long) with the following day’s proportion in physical behaviors. With generalized linear mixed models with binomial distribution, the authors estimated the association of physical behavior proportions on sleep categories. Physical behavior proportions were operationalized using percentages of wearing time and by applying a compositional approach. All analyses were stratified by gender accounting for differing developmental stages. Results: For males (number of observed days: 345, n = 83), short as compared with optimal sleep was associated with the following day’s proportion spent in sedentary (−2.57%, p = .03, 95% confidence interval [CI] [−4.95, −0.19]) and light-intensity activities (1.96%, p = .02, 95% CI [0.27, 3.65]), which was not significant in the compositional approach models. Among females (number of observed days: 427, n = 104), long sleep was associated with the proportions spent in moderate- to vigorous-intensity physical activity (1.69%, p < .001, 95% CI [0.75, 2.64]) and in sedentary behavior (−3.02%, p < .01, 95% CI [−5.09, −0.96]), which was replicated by the compositional approach models. None of the associations between daytime activity and sleep were significant (number of obs.: 844, n = 204). Conclusions: Results indicate partial associations between sleep and the following day’s physical behaviors, and no associations between physical behaviors and the following night’s sleep.

Berninger and Knell are joint first authors. Berninger and Ten Hoor are with the Department of Work and Social Psychology, Maastricht University, Maastricht, The Netherlands. Knell is with the Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center (UTHealth) at Houston, Houston, TX, USA; the Center for Pediatric Population Health, School of Public Health, The University of Texas Health Science Center (UTHealth) at Houston, Dallas, TX, USA; and Children’s Health Andrews Institute for Orthopedics and Sports Medicine, Children’s Health System, Plano, TX, USA. Gabriel is with the Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL, USA. Plasqui is with the Department of Human Biology and Movement Sciences, Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands. Crutzen is with the Department of Health Promotion, CAPHRI, Maastricht University, Maastricht, The Netherlands.

Berninger (Nathalie.Berninger@maastrichtuniversity.nl) is corresponding author.
  • Adolescent Sleep Working Group. (2014). School start times for adolescents. Pediatrics, 134(3), 642649. doi:

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716723. doi:

  • Banda, J.A., Haydel, K.F., Davila, T., Desai, M., Bryson, S., Haskell, W.L., … Robinson, T.N. (2016). Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One, 11(3), e0150534e0150534. PubMed ID: 26938240 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baron, K.G., Reid, K.J., & Zee, P.C. (2013). Exercise to improve sleep in insomnia: Exploration of the bidirectional effects. Journal of Clinical Sleep Medicine, 9(8), 819824. PubMed ID: 23946713 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention, National Center for Health Statistics, and U.S. Department of Health and Human Services. (n.d.). NHANES: Body composition procedures manual. Retrieved from http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/BC.pdf

    • Export Citation
  • Chaput, J.-P., Saunders, T., & Carson, V. (2017). Interactions between sleep, movement and other non-movement behaviours in the pathogenesis of childhood obesity. Obesity Reviews, 18, 714. PubMed ID: 28164448 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chastin, S.F., Palarea-Albaladejo, J., Dontje, M.L., & Skelton, D.A. (2015). Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS One, 10(10), e0139984. PubMed ID: 26461112 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Beydoun, M.A., & Wang, Y. (2008). Is sleep duration associated with childhood obesity? A systematic review and meta-analysis. Obesity, 16(2), 265274. PubMed ID: 18239632 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Ward, S.C., Schnelle, J.F., & Buchowski, M.S. (2012). Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Medicine & Science in Sports & Exercise, 44(10), 2009. PubMed ID: 22525772 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dulloo, A.G., Miles-Chan, J.L., & Montani, J.P. (2017). Nutrition, movement and sleep behaviours: Their interactions in pathways to obesity and cardiometabolic diseases. Obesity Reviews, 18(Suppl. 1), 36. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Catellier, D.J., Gill, K., Ondrak, K.S., & McMurray, R.G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 15571565. PubMed ID: 18949660 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fredriks, A.M., van Buuren, S., Wit, J.M., & Verloove-Vanhorick, S.P. (2000). Body index measurements in 1996-7 compared with 1980. Archives of Disease in Childhood, 82(2), 107112. PubMed ID: 10648362 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirshkowitz, M., Whiton, K., Albert, S.M., Alessi, C., Bruni, O., DonCarlos, L., … Adams Hillard, P.J. (2015). National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health, 1(1), 4043. PubMed ID: 29073412 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishida, M., & Elavsky, S. (2016). An intensive longitudinal examination of daily physical activity and sleep in midlife women. Sleep Health, 2(1), 4248. PubMed ID: 29073452 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kredlow, M.A., Capozzoli, M.C., Hearon, B.A., Calkins, A.W., & Otto, M.W. (2015). The effects of physical activity on sleep: A meta-analytic review. Journal of Behavioral Medicine, 38(3), 427449. PubMed ID: 25596964 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krietsch, K.N., Armstrong, B., McCrae, C.S., & Janicke, D.M. (2016). Temporal associations between sleep and physical activity among overweight/obese youth. Journal of Pediatric Psychology, 41(6), 680691. PubMed ID: 26801238 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzik, N., Carson, V., Andersen, L.B., Sardinha, L.B., Grøntved, A., Hansen, B.H., … Ekelund, U. (2017). Physical activity and sedentary time associations with metabolic health across weight statuses in children and adolescents. Obesity, 25(10), 17621769. PubMed ID: 28782888 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambiase, M.J., Gabriel, K.P., Kuller, L.H., & Matthews, K.A. (2013). Temporal relationships between physical activity and sleep in older women. Medicine & Science in Sports & Exercise, 45(12), 23622368. PubMed ID: 23739529 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landhuis, C.E., Poulton, R., Welch, D., & Hancox, R.J. (2008). Childhood sleep time and long-term risk for obesity: A 32-year prospective birth cohort study. Pediatrics, 122(5), 955960. PubMed ID: 18977973 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lockley, S.W., Skene, D.J., & Arendt, J. (1999). Comparison between subjective and actigraphic measurement of sleep and sleep rhythms. Journal of Sleep Research, 8(3), 175183. PubMed ID: 10476003 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahalanobis, P.C. (1936). On the generalized distance in statistics. National Institute of Science of India.

  • Master, L., Nye, R.T., Lee, S., Nahmod, N.G., Mariani, S., Hale, L., & Buxton, O.M. (2019). Bidirectional, daily temporal associations between sleep and physical activity in adolescents. Scientific Reports, 9(1), 7732. PubMed ID: 31118441 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCrae, C.S., Rowe, M.A., Tierney, C.G., Dautovich, N.D., Definis, A.L., & McNamara, J.P. (2005). Sleep complaints, subjective and objective sleep patterns, health, psychological adjustment, and daytime functioning in community-dwelling older adults. The Journals of Gerontology, Series B: Psychological Sciences & Social Sciences, 60(4), P182P189. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M.A., Kruisbrink, M., Wallace, J., Ji, C., & Cappuccio, F.P. (2018). Sleep duration and incidence of obesity in infants, children, and adolescents: A systematic review and meta-analysis of prospective studies. Sleep, 41(4), 119. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J.A., Godbole, S., Moran, K., Murray, K., James, P., Laden, F., … Glanz, K. (2016). No evidence of reciprocal associations between daily sleep and physical activity. Medicine & Science in Sports & Exercise, 48(10), 19501956. PubMed ID: 27285490 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monk, T.H., Reynolds, C.F., III, Kupfer, D.J., Buysse, D.J., Coble, P.A., Hayes, A.J., … Ritenour, A.M. (1994). The Pittsburgh sleep diary. Journal of Sleep Research, 3(2), 111120. PubMed ID: 10607115 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohayon, M.M., Roberts, R.E., Zulley, J., Smirne, S., & Priest, R.G. (2000). Prevalence and patterns of problematic sleep among older adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 39(12), 15491556. PubMed ID: 11128333 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, F.B., Chillon, P., Ruiz, J.R., Delgado, M., Albers, U., Alvarez-Granda, J.L., … Castillo, M.J. (2010). Sleep patterns in Spanish adolescents: Associations with TV watching and leisure-time physical activity. European Journal of Applied Physiology, 110(3), 563573. PubMed ID: 20556419 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, G.C., & Viner, R. (2007). Pubertal transitions in health. The Lancet, 369(9567), 11301139. doi:

  • Pettee Gabriel, K., Sternfeld, B., Shiroma, E.J., Perez, A., Cheung, J., & Lee, I.M. (2017). Bidirectional associations of accelerometer-determined sedentary behavior and physical activity with reported time in bed: Women’s Health Study. Sleep Health, 3(1), 4955. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plasqui, G. (2017). Smart approaches for assessing free-living energy expenditure following identification of types of physical activity. Obesity Reviews, 18(Suppl. 1), 5055. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plasqui, G., Bonomi, A.G., & Westerterp, K.R. (2013). Daily physical activity assessment with accelerometers: New insights and validation studies. Obesity Reviews, 14(6), 451462. PubMed ID: 23398786 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pronk, N.P., Anderson, L.H., Crain, A.L., Martinson, B.C., O’Connor, P.J., Sherwood, N.E., & Whitebird, R.R. (2004). Meeting recommendations for multiple healthy lifestyle factors. Prevalence, clustering, and predictors among adolescent, adult, and senior health plan members. American Journal of Preventive Medicine, 27(2), 2533. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, C.L., Palarea-Albaladejo, J., Bauman, A., Gupta, N., Nabe-Nielsen, K., Birk Jørgensen, M., & Holtermann, A. (2018). Does physically demanding work hinder a physically active lifestyle in low socioeconomic workers? A compositional data analysis based on accelerometer data. International Journal of Environmental Research and Public Health, 15(7), 1306. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renninger, M., Hansen, B.H., Steene-Johannessen, J., Kriemler, S., Froberg, K., Northstone, K., … Ekelund, U. (2020). Associations between accelerometry measured physical activity and sedentary time and the metabolic syndrome: A meta-analysis of more than 6000 children and adolescents. Pediatric Obesity, 15(1), e12578. PubMed ID: 31709781 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Fulton, J.E., Buman, M.P., Troiano, R.P., Grandner, M.A., Buchner, D.M., & Haskell, W.L. (2019). The 24-hour activity cycle: A new paradigm for physical activity. Medicine & Science in Sports & Exercise, 51(3), 454464. PubMed ID: 30339658 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeller, D.A., Ravussin, E., Schutz, Y., Acheson, K.J., Baertschi, P., & Jequier, E. (1986). Energy expenditure by doubly labeled water: Validation in humans and proposed calculation. American Journal of Physiology, 250(5, Pt. 2), R823R830. PubMed ID: 3085521 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soric, M., Starc, G., Borer, K.T., Jurak, G., Kovac, M., Strel, J., & Misigoj-Durakovic, M. (2015). Associations of objectively assessed sleep and physical activity in 11-year old children. Annals of Human Biology, 42(1), 3137. PubMed ID: 25007958 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ten Hoor, G.A., Kok, G., Rutten, G.M., Ruiter, R.A.C., Kremers, S.P.J., Schols, A.M.J.W., & Plasqui, G. (2016). The Dutch ‘Focus on Strength’ intervention study protocol: Programme design and production, implementation and evaluation plan. BMC Public Health, 16(1), 496. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ten Hoor, G.A., Rutten, G.M., Van Breukelen, G.J.P., Kok, G., Ruiter, R.A.C., Meijer, K., … Schols, A.M.J.W. (2018). Strength exercises during physical education classes in secondary schools improve body composition: A cluster randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 92. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timothy, G.L. (1989). Assessment of body composition in children. Pediatric Exercise Science, 1(1), 1930. doi:

  • Toftager, M., Kristensen, P.L., Oliver, M., Duncan, S., Christiansen, L.B., Boyle, E., … Troelsen, J. (2013). Accelerometer data reduction in adolescents: Effects on sample retention and bias. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 140. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Chaput, J.-P., Adamo, K.B., Aubert, S., Barnes, J.D., Choquette, L., … Gray, C.E. (2017). Canadian 24-hour movement guidelines for the early years (0–4 years): An integration of physical activity, sedentary behaviour, and sleep. BMC Public Health, 17(Suppl. 5), 874. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., Loprinzi, P.D., Moore, R., & Pfeiffer, K.A. (2011). Comparison of accelerometer cut points for predicting activity intensity in youth. Medicine & Science in Sports & Exercise, 43(7), 13601368. PubMed ID: 21131873 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., Pate, R.R., Freedson, P.S., Sallis, J.F., & Taylor, W.C. (2000). Using objective physical activity measures with youth: How many days of monitoring are needed? Medicine & Science in Sports & Exercise, 32(2), 426431. PubMed ID: 10694127 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Kooy, K., Leenen, R., Deurenberg, P., Seidell, J.C., Westerterp, K.R., & Hautvast, J.G. (1992). Changes in fat-free mass in obese subjects after weight loss: A comparison of body composition measures. International Journal of Obesity and Related Metabolic Disorders, 16(9), 675683.

    • Search Google Scholar
    • Export Citation
  • Verkooijen, S., de Vos, N., Bakker-Camu, B.J.W., Branje, S.J.T., Kahn, R.S., Ophoff, R.A., … Boks, M.P.M. (2018). Sleep disturbances, psychosocial difficulties, and health risk behavior in 16,781 Dutch adolescents. Academic Pediatrics, 18(6), 655661. PubMed ID: 29530583 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerterp, K.R., Meijer, G.A., Saris, W.H., Soeters, P.B., Winants, Y., & ten Hoor, F. (1991). Physical activity and sleeping metabolic rate. Medicine & Science in Sports & Exercise, 23(2), 166170. PubMed ID: 2017012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerterp, K.R., Wouters, L., & van Marken Lichtenbelt, W.D. (1995). The Maastricht protocol for the measurement of body composition and energy expenditure with labeled water. Obesity Research, 3(Suppl. 1), 4957. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yngve, A., Nilsson, A., Sjostrom, M., & Ekelund, U. (2003). Effect of monitor placement and of activity setting on the MTI accelerometer output. Medicine & Science in Sports & Exercise, 35(2), 320326. PubMed ID: 12569223 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 161 161 93
Full Text Views 9 9 2
PDF Downloads 7 7 2