Protocol and Data Description: The Free-Living Activity Study for Health

in Journal for the Measurement of Physical Behaviour
View More View Less
  • 1 Children’s Mercy Hospital
  • | 2 Iowa State University
  • | 3 National Cancer Institute
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $38.00

1 year online subscription

USD  $51.00

Student 2 year online subscription

USD  $73.00

2 year online subscription

USD  $97.00

Physical behavior can be assessed using a range of competing methods. The Free-Living Activity Study for Health (FLASH) is an ongoing study that facilitates the comparison of such methods. The purpose of this report is to describe the FLASH, with a particular emphasis on a subsample of participants who have consented to have their deidentified data released in a shared repository. Participants in the FLASH wear seven physical activity monitors for a 24-hr period and then complete a detailed recall using the Activities Completed Over Time in 24-hr online assessment tool. The participants can optionally agree to be video recorded for 30–60 min, which allows for direct observation as a criterion indicator of their behavior during that period. As of version 0.1.0, the repository includes data from 38 participants, and the sample size will grow as data are collected, processed, and released in future versions. The repository makes it possible to combine sensor data (e.g., from ActiGraph and SenseWear) with minute-by-minute contextual data (from the Activities Completed Over Time in 24-hr recall system), which enables the FLASH to generate benchmark data for a wide range of future research. The repository itself provides an example of how a powerful open-source tool (GitHub) can be used to share data and code in a way that encourages communication and collaboration among a variety of scientists (e.g., algorithm developers and end users). The FLASH data set will provide long-term benefits to researchers interested in advancing the science of physical behavior monitoring.

Hibbing is with the Center for Children’s Healthy Lifestyles and Nutrition, Children’s Mercy Hospital, Kansas City, MO, USA. Lamoureux and Welk are with Iowa State University, Ames, IA, USA. Matthews is with the National Cancer Institute, Bethesda, MD, USA.

Hibbing (prhibbing@cmh.edu) is corresponding author.
  • Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Jr., Tudor-Locke, C., … Leon, A.S. (2011). 2011 Compendium of physical activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 15751581. PubMed ID: 21681120 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., … Leon, A.S. (2000). Compendium of physical activities: An update of activity codes and MET intensities. Medicine & Science in Sports & Exercise, 32(Suppl. 9), S498S504. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, L., Liu, Z., Matthews, C.E., & Buchowski, M.S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine & Science in Sports & Exercise, 43(2), 357364. PubMed ID: 20581716 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, A., Jackson, D., Hammerla, N., Plotz, T., Olivier, P., Granat, M.H., … Wareham, N.J. (2017). Large scale population assessment of physical activity using wrist worn accelerometers: The UK Biobank study. PLoS One, 12(2), e0169649. PubMed ID: 28146576 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Goto, M.M., & Furberg, R.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feehan, L.M., Geldman, J., Sayre, E.C., Park, C., Ezzat, A.M., Yoo, J.Y., … Li, L.C. (2018). Accuracy of fitbit devices: Systematic review and narrative syntheses of quantitative data. JMIR Mhealth Uhealth, 6(8), e10527. PubMed ID: 30093371 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7(11), 13251330. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heesch, K.C., Hill, R.L., Aguilar-Farias, N., Van Uffelen, J.G., & Pavey, T. (2018). Validity of objective methods for measuring sedentary behaviour in older adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 119. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keadle, S.K., Lyden, K.A., Strath, S.J., Staudenmayer, J.W., & Freedson, P.S. (2019). A framework to evaluate devices that assess physical behavior. Exercise and Sport Sciences Reviews, 47(4), 206214. PubMed ID: 31524786 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.-M., & Shiroma, E.J. (2014). Using accelerometers to measure physical activity in large-scale epidemiological studies: Issues and challenges. British Journal of Sports Medicine, 48(3), 197201. PubMed ID: 24297837 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C. (2019, June 26). Application of a previous-day recall in monitor calibration and validation protocols and available data in FLASH (Free Living Activity Study for Health). Presented at the Symposium I: Advancing Collaborative Activity Monitor Research Using Open-Source Tools, Maastricht, The Netherlands.

    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Berrigan, D., Fischer, B., Gomersall, S.R., Hillreiner, A., Kim, Y., … Welk, G.J. (2019). Use of previous-day recalls of physical activity and sedentary behavior in epidemiologic studies: Results from four instruments. BMC Public Health, 19(Suppl. 2), 478. PubMed ID: 31159761 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, C.E., Kozey Keadle, S., Moore, S.C., Schoeller, D.S., Carroll, R.J., Troiano, R.P., & Sampson, J.N. (2018). Measurement of active and sedentary behavior in context of large epidemiologic studies. Medicine & Science in Sports & Exercise, 50(2), 266276. PubMed ID: 28930863 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • Rosenberger, M.E., Fulton, J.E., Buman, M.P., Troiano, R.P., Grandner, M.A., Buchner, D.M., & Haskell, W.L. (2019). The 24-hour activity cycle: A new paradigm for physical activity. Medicine & Science in Sports & Exercise, 51(3), 454464. PubMed ID: 30339658 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, A.V. (2018). Moving forward with accelerometer-assessed physical activity: Two strategies to ensure meaningful, interpretable, and comparable measures. Pediatric Exercise Science, 30(4), 450456. PubMed ID: 30304982 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silfee, V.J., Haughton, C.F., Jake-Schoffman, D.E., Lopez-Cepero, A., May, C.N., Sreedhara, M., … Lemon, S.C. (2018). Objective measurement of physical activity outcomes in lifestyle interventions among adults: A systematic review. Preventive Medicine Reports, 11, 7480. PubMed ID: 29984142 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strath, S.J., Kaminsky, L.A., Ainsworth, B.E., Ekelund, U., Freedson, P.S., Gary, R.A., … Swartz, A.M. (2013). Guide to the assessment of physical activity: Clinical and research applications: A scientific statement from the American Heart Association. Circulation, 128(20), 22592279. PubMed ID: 24126387 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troiano, R.P., Gabriel, K.K.P., Welk, G.J., Owen, N., & Sternfeld, B. (2012). Reported physical activity and sedentary behavior: Why do you ask? Journal of Physical Activity and Health, 9(Suppl. 1), S68S75. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hees, V.T., Thaler-Kall, K., Wolf, K.-H., Brønd, J.C., Bonomi, A., Schulze, M., … Gorzelniak, L. (2016). Challenges and opportunities for harmonizing research methodology: Raw accelerometry. Methods of Information in Medicine, 55(6), 525532. PubMed ID: 27714396 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J., Bai, Y., Lee, J.-M., Godino, J., Saint-Maurice, P.F., & Carr, L. (2019). Standardizing analytic methods and reporting in activity monitor validation studies. Medicine & Science in Sports & Exercise, 51(8), 1767. PubMed ID: 30913159 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijndaele, K., Westgate, K., Stephens, S.K., Blair, S.N., Bull, F.C., Chastin, S.F., … Freedson, P.S. (2015). Utilization and harmonization of adult accelerometry data: Review and expert consensus. Medicine & Science in Sports & Exercise, 47(10), 2129. PubMed ID: 25785929 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 192 192 22
Full Text Views 10 10 0
PDF Downloads 4 4 0