Physical Activity and Sedentary Behavior Clustering: Segmentation to Optimize Active Lifestyles

Click name to view affiliation

Stephen Zwolinsky
Search for other papers by Stephen Zwolinsky in
Current site
Google Scholar
PubMed
Close
,
James McKenna
Search for other papers by James McKenna in
Current site
Google Scholar
PubMed
Close
,
Andy Pringle
Search for other papers by Andy Pringle in
Current site
Google Scholar
PubMed
Close
,
Paul Widdop
Search for other papers by Paul Widdop in
Current site
Google Scholar
PubMed
Close
,
Claire Griffiths
Search for other papers by Claire Griffiths in
Current site
Google Scholar
PubMed
Close
,
Michelle Mellis
Search for other papers by Michelle Mellis in
Current site
Google Scholar
PubMed
Close
,
Zoe Rutherford
Search for other papers by Zoe Rutherford in
Current site
Google Scholar
PubMed
Close
, and
Peter Collins
Search for other papers by Peter Collins in
Current site
Google Scholar
PubMed
Close
Restricted access

Background:

Increasingly the health impacts of physical inactivity are being distinguished from those of sedentary behavior. Nevertheless, deleterious health prognoses occur when these behaviors combine, making it a Public Health priority to establish the numbers and salient identifying factors of people who live with this injurious combination.

Methods:

Using an observational between-subjects design, a nonprobability sample of 22,836 participants provided data on total daily activity. A 2-step hierarchical cluster analysis identified the optimal number of clusters and the subset of distinguishing variables. Univariate analyses assessed significant cluster differences.

Results:

High levels of sitting clustered with low physical activity. The Ambulatory & Active cluster (n = 6254) sat for 2.5 to 5 h·d−1 and were highly active. They were significantly younger, included a greater proportion of males and reported low Indices of Multiple Deprivation compared with other clusters. Conversely, the Sedentary & Low Active cluster (n = 6286) achieved ≤60 MET·min·wk−1 of physical activity and sat for ≥8 h·d−1. They were the oldest cluster, housed the largest proportion of females and reported moderate Indices of Multiple Deprivation.

Conclusions:

Public Health systems may benefit from developing policy and interventions that do more to limit sedentary behavior and encourage light intensity activity in its place.

The authors are with the Centre for Active Lifestyles, Leeds Beckett University, Leeds, UK.

Zwolinsky (s.zwolinsky@leedsbeckett.ac.uk) is corresponding author.
  • Collapse
  • Expand