Imputing Accelerometer Nonwear Time When Assessing Moderate to Vigorous Physical Activity in Children

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: A limitation of accelerometer measures of moderate to vigorous physical activity (MVPA) is nonwear time. Nonwear-time data is typically deleted prior to estimating MVPA. In this study, we used an approach that used sociodemographic, health, and time data to guide the imputation of nonwear-time data. We determined whether imputing nonwear-time data influences estimates of MVPA and the association between MVPA, body mass index, and blood pressure. Methods: Seven days of accelerometer data were collected on 332 children aged 10–13 years. MVPA was estimated in a “nonimputed dataset,” wherein nonwear-time data were deleted prior to estimating MVPA, and in an “imputed dataset,” wherein nonwear-time data were imputed using sociodemographic and health characteristics of participants and time characteristics of the nonwear period prior to estimating MVPA. Results: Nonwear time represented 7% of waking hours. Average MVPA estimates did not differ in the nonimputed and imputed datasets (56.8 vs 58.4 min/d). The strength of the relationship between MVPA and the 2 health outcomes did not differ in the nonimputed and imputed datasets. Conclusions: Studies achieving high accelerometer wear-time compliance can obtain MVPA estimates without substantial bias if they use the traditional approach of deleting nonwear-time data.

Borgundvaag and McIsaac are with the Dept of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada. Borghese is with the School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada. Janssen is with the Dept of Public Health Sciences and School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada.

Janssen (ian.janssen@queensu.ca) is corresponding author.
  • 1.

    Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. PubMed doi:10.1186/1479-5868-7-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Guinhouya BC, Samouda H, de Beaufort C. Level of physical activity among children and adolescents in Europe: a review of physical activity assessed objectively by accelerometry. Public Health. 2013;127(4):301–311. PubMed doi:10.1016/j.puhe.2013.01.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lee PH. Data imputation for accelerometer-measured physical activity: the combined approach. Am J Clin Nutr. 2013;97(5):965–971. PubMed doi:10.3945/ajcn.112.052738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Audrey S, Bell S, Hughes R, Campbell R. Adolescent perspectives on wearing accelerometers to measure physical activity in population-based trials. Eur J Public Health. 2013;23(3):475–480. PubMed doi:10.1093/eurpub/cks081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Toftager M, Kristensen PL, Oliver M, et al. Accelerometer data reduction in adolescents: effects on sample retention and bias. Int J Behav Nutr Phys Act. 2013;10:140. PubMed doi:10.1186/1479-5868-10-140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. PubMed doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–450. PubMed doi:10.1123/jpah.10.3.437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tudor-Locke C, Camhi SM, Troiano RP. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003–2006. Prev Chronic Dis. 2012;9:113. PubMed

    • Search Google Scholar
    • Export Citation
  • 9.

    Colley R, Connor Gorber S, Tremblay MS. Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep. 2010;21(1):63–69. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Public Health Rep. 2011;22(1):15–23.

    • Search Google Scholar
    • Export Citation
  • 11.

    Sirard JR, Slater ME. Compliance with wearing physical activity accelerometers in high school students. J Phys Act Health. 2009;6(suppl 1):S148–155. doi:10.1123/jpah.6.s1.s148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kang M, Zhu W, Tudor-Locke C, Ainsworth B. Experimental determination of effectiveness of an individual information-centered approach in recovering step-count missing data. Meas Phys Educ Exerc Sci. 2005;9(4):233–250. doi:10.1207/s15327841mpee0904_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Alhassan S, Sirard JR, Spencer TR, Varady A, Robinson TN. Estimating physical activity from incomplete accelerometer data in field studies. J Phys Act Health. 2008;5(Suppl 1):S112–S125. doi:10.1123/jpah.5.s1.s112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kang M, Rowe DA, Barreira TV, Robinson TS, Mahar MT. Individual information-centered approach for handling physical activity missing data. Res Q Exerc Sport. 2009;80(2):131–137. doi:10.1080/02701367.2009.10599546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lee JA, Gill J. Missing value imputation for physical activity data measured by accelerometer [published online ahead of print March 17, 2016]. Stat Methods Med Res. doi:10.1177/0962280216633248

    • Search Google Scholar
    • Export Citation
  • 16.

    Trost SG, Pate RR, Sallis JF, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350–355. PubMed doi:10.1097/00005768-200202000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status. Med Sci Sports Exerc. 2010;42(12):2211–2221. PubMed doi:10.1249/MSS.0b013e3181e1fba9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ferreira I, van der Horst K, Wendel-Vos W, Kremers S, van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth—a review and update. Obes Rev. 2007;8(2):129–154. PubMed doi:10.1111/j.1467-789X.2006.00264.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    De Baere S, Lefevre J, De Martelaer K, Philippaerts R, Seghers J. Temporal patterns of physical activity and sedentary behavior in 10–14 year-old children on weekdays. BMC Public Health. 2015;15:791. PubMed doi:10.1186/s12889-015-2093-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):426–431. PubMed doi:10.1097/00005768-200002000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tucker P, Gilliland J. The effect of season and weather on physical activity: a systematic review. Public Health. 2007;121(12):909–922. PubMed doi:10.1016/j.puhe.2007.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bagley S, Salmon J, Crawford D. Family structure and children’s television viewing and physical activity. Med Sci Sports Exerc. 2006;38(5):910–918. PubMed doi:10.1249/01.mss.0000218132.68268.f4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Riner WF, Sellhorst SH. Physical activity and exercise in children with chronic health conditions. J Sport Health Sci. 2013;2(1):12–20. doi:10.1016/j.jshs.2012.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Braithwaite I, Stewart AW, Hancox RJ, et al. Fast-food consumption and body mass index in children and adolescents: an international cross-sectional study. BMJ Open. 2014;4(12):e005813. PubMed doi:10.1136/bmjopen-2014-005813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Barnes TL, French SA, Harnack LJ, Mitchell NR, Wolfson J. Snacking behaviors, diet quality, and body mass index in a community sample of working adults. J Acad Nutr Diet. 2015;115(7):1117–1123. PubMed doi:10.1016/j.jand.2015.01.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–694. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150–157. PubMed doi:10.1038/oby.2002.24

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tremblay MS, Warburton DE, Janssen I, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36(1):36–46. PubMed doi:10.1139/H11-009

  • 29.

    Rubin D. Multiple Imputation for Nonresponse in Surveys. New York, NY: John Wiley & Sons; 1987.

  • 30.

    Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc. 1996;91(434):473–489. doi:10.1080/01621459.1996.10476908

All Time Past Year Past 30 Days
Abstract Views 42 42 4
Full Text Views 7 7 6
PDF Downloads 1 1 0