A Multicomponent Schoolyard Intervention Targeting Children’s Recess Physical Activity and Sedentary Behavior: Effects After 1 Year

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: The aim of the study was to test the 12-month effects of a multicomponent physical activity (PA) intervention at schoolyards on morning recess PA levels of sixth- and seventh-grade children in primary schools, using accelerometry and additional global positioning system data. Methods: A quasi-experimental study design was used with 20 paired intervention and control schools. Global positioning system confirmatory analyses were applied to validate attendance at schoolyards during recess. Accelerometer data from 376 children from 7 pairs of schools were included in the final analyses. Pooled intervention effectiveness was tested by multilevel linear regression analyses, whereas effectiveness of intervention components was tested by multivariate linear regression analyses. Results: Children exposed to the multicomponent intervention increased their time spent in light PA (+5.9%) during recess. No pooled effects on moderate to vigorous PA were found. In-depth analyses of intervention components showed that physical schoolyard interventions particularly predicted a decrease in time spent in sedentary behavior during recess at follow-up. Intervention intensity and the school’s commitment to the project strengthened this effect. Conclusions: The multicomponent schoolyard PA intervention was effective in making children spend a larger proportion of recess time in light PA, which was most likely the result of a shift from sedentary behavior to light PA.

Van Kann is with the Dept of Health Promotion, School of Public Health and Primary Care (CAPHRI), Maastricht University, Maastricht, The Netherlands; School of Sport Studies, Fontys University of Applied Sciences, Eindhoven, The Netherlands; and Academic Collaborative Center for Public Health Limburg, Public Health Services, Geleen, The Netherlands. S.I. de Vries is with the Research Group Healthy Lifestyle in a Supporting Environment, The Hague University of Applied Sciences, The Hague, The Netherlands. Schipperijn is with the Dept of Sports Science and Clinical Biomechanics, Research Unit for Active Living, University of Southern Denmark, Odense, Denmark. N.K. de Vries is with the Dept of Health Promotion, School of Public Health and Primary Care (CAPHRI), Maastricht University, Maastricht, The Netherlands. Jansen is with the Academic Collaborative Center for Public Health Limburg, Public Health Services, Geleen, The Netherlands; and Dept of Health Services Research, School of Public Health and Primary Care (CAPHRI), Maastricht University, Maastricht, The Netherlands. Kremers is with the Dept of Health Promotion, Nutrition and Translational Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands.

Van Kann (d.vankann@maastrichtuniversity.nl) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Rothon CEdwards PBhui KViner RTaylor SStansfeld S. Physical activity and depressive symptoms in adolescents: a prospective study. BMC Med. 2010;8(1):32. PubMed doi:10.1186/1741-7015-8-32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Andersen LBRiddoch CKriemler SHills A. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45(11):871876. PubMed doi:10.1136/bjsports-2011-090333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Biddle SJHAsare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45(11):886895. PubMed doi:10.1136/bjsports-2011-090185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Loprinzi PDCardinal BJLoprinzi KLLee H. Benefits and environmental determinants of physical activity in children and adolescents. Obes Facts. 2012;5(4):597610. PubMed doi:10.1159/000342684

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Trudeau FShephard RJ. Relationships of physical activity to brain health and the academic performance of schoolchildren. Am J Lifestyle Med. 2010;4:138150. doi:10.1177/1559827609351133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Singh ASMulder CTwisk JWRVan Mechelen WChinapaw MJM. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474488. PubMed doi:10.1111/j.1467-789X.2008.00475.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Metcalf BHenley WWilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ. 2012;345:5888. PubMed doi:10.1136/bmj.e5888

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sims JScarborough PFoster C. The effectiveness of interventions on sustained childhood physical activity: a systematic review and meta-analysis of controlled studies. PLoS ONE. 2015;10(7):e1032935. PubMed doi:10.1371/journal.pone.0132935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    van Sluijs EMFMcMinn AMGriffin SJ. Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials. BMJ. 2007;335:703707. PubMed doi:10.1136/bmj.39320.843947.BE

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ridgers NSalmon JParrish AStanley ROkely A. Physical activity during school recess: a systematic review. Am J Prev Med. 2012;43(3):320328. PubMed doi:10.1016/j.amepre.2012.05.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Stanley RRidley KDollman J. Correlates of children’s time-specific physical activity: a review of the literature. Int J Behav Nutr Phys Act. 2012;9(1):50. PubMed doi:10.1186/1479-5868-9-50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Parrish A-MOkely AStanley RRidgers N. The effect of school recess interventions on physical activity. Sports Med. 2013;43(4):287299. PubMed doi:10.1007/s40279-013-0024-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Escalante YGarcía-Hermoso ABackx KSaavedra JM. Playground designs to increase physical activity levels during school recess: a systematic review. Health Educ Behav. 2014;41(2):138144. PubMed doi:10.1177/1090198113490725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Broekhuizen KScholten A-Mde Vries S. The value of (pre)school playgrounds for children’s physical activity level: a systematic review. Int J Behav Nutr Phys Act. 2014;11(1):59. PubMed doi:10.1186/1479-5868-11-59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ridgers NFairclough SStratton G. Variables associated with children’s physical activity levels during recess: the A-CLASS project. Int J Behav Nutr Phys Act. 2010;7(1):74. PubMed doi:10.1186/1479-5868-7-74

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Willenberg LJAshbolt RHolland Det al. Increasing school playground physical activity: a mixed methods study combining environmental measures and children’s perspectives. J Sci Med Sport. 2010;13(2):210216. PubMed doi:10.1016/j.jsams.2009.02.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Colabianchi NMaslow ASwayampakala K. Features and amenities of school playgrounds: a direct observation study of utilization and physical activity levels outside of school time. Int J Behav Nutr Phys Act. 2011;8(1):32. PubMed doi:10.1186/1479-5868-8-32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ridgers NFairclough SStratton G. Twelve-month effects of a playground intervention on children’s morning and lunchtime recess physical activity levels. J Phys Act Health. 2010;7(2):167175. PubMed doi:10.1123/jpah.7.2.167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Janssen MTwisk JWRToussaint HMvan Mechelen WVerhagen EALM. Effectiveness of the PLAYgrounds programme on PA levels during recess in 6-year-old to 12-year-old children. Br J Sports Med. 2015;49(4):259264. PubMed doi:10.1136/bjsports-2012-091517

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ridgers NStratton GFairclough STwisk J. Long-term effects of a playground markings and physical structures on children’s recess physical activity levels. Prev Med. 2007;44:393397. PubMed doi:10.1016/j.ypmed.2007.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Loucaides CAJago RCharalambous I. Promoting physical activity during school break times: piloting a simple, low cost intervention. Prev Med. 2009;48(4):332334. PubMed doi:10.1016/j.ypmed.2009.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Huberty JLSiahpush MBeighle AFuhrmeister ESilva PWelk G. Ready for recess: a pilot study to increase physical activity in elementary school children. J Sch Health. 2011;81(5):251257. PubMed doi:10.1111/j.1746-1561.2011.00591.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sallis JFCervero RBAscher WHenderson KAKraft MKKerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297322. PubMed doi:10.1146/annurev.publhealth.27.021405.102100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kremers SPde Bruijn GJVisscher TLvan Mechelen Wde Vries NKBrug J. Environmental influences on energy balance-related behaviors: a dual-process view. Int J Behav Nutr Phys Act. 2006;3:9. PubMed doi:10.1186/1479-5868-3-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gubbels JSVan Kann DHHde Vries NKThijs CKremers SPJ. The next step in health behavior research: the need for ecological moderation analyses—an application to diet and physical activity at childcare. Int J Behav Nutr Phys Act. 2014;11:52. PubMed doi:10.1186/1479-5868-11-52

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Saunders TJChaput J-PTremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):5361. PubMed doi:10.1016/j.jcjd.2013.08.266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pearson NBraithwaite REBiddle SJHvan Sluijs EMFAtkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15(8):666675. PubMed doi:10.1111/obr.12188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Blaes ARidgers NDAucouturier JVan Praagh EBerthoin SBaquet G. Effects of a playground marking intervention on school recess physical activity in French children. Prev Med. 2013;57:580584. PubMed doi:10.1016/j.ypmed.2013.07.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    D’Haese SVan Dyck DDe Bourdeaudhuij ICardon G. Effectiveness and feasibility of lowering playground density during recess to promote physical activity and decrease sedentary time at primary school. BMC Public Health. 2013;13(1):1154. PubMed doi:10.1186/1471-2458-13-1154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Andersen HBPawlowski CSScheller HBTroelsen JToftager MSchipperijn J. Activating schoolyards: study design of a quasi-experimental schoolyard intervention study. BMC Public Health. 2015;15:523. PubMed doi:10.1186/s12889-015-1828-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Jankowska MSchipperijn JKerr J. A framework for using GPS data in physical activity and sedentary behavior studies. Exerc Sport Sci Rev. 2015;43(1):4856. PubMed doi:10.1249/JES.0000000000000035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dessing DPierik FSterkenburg Rvan Dommelen PMaas Jde Vries S. School yard physical activity of 6-11 year old children assessed by GPS and accelerometry. Int J Behav Nutr Phys Act. 2013;10:97. PubMed doi:10.1186/1479-5868-10-97

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Klinker CSchipperijn JChristian HKerr JErsboll ATroelsen J. Using accelerometers and global positioning system devices to assess gender and age differences in children’s school, transport, leisure and home based physical activity. Int J Behav Nutr Phys Act. 2014;11(1):8. PubMed doi:10.1186/1479-5868-11-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Klinker CDSchipperijn JKerr JErsbøll AKTroelsen J. Context-specific outdoor time and physical activity among school-children across gender and age: using accelerometers and GPS to advance methods. Front Public Health. 2014;2:20. PubMed doi:10.3389/fpubh.2014.00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Van Kann DHHJansen MWJde Vries SIde Vries NKJansen MWJ. Active living: development and quasi-experimental evaluation of a school-centered physical activity intervention for primary school children. BMC Public Health. 2015;15:1315. PubMed doi:10.1186/s12889-015-2633-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Panter JJones Avan Sluijs E. Environmental determinants of active travel in youth: a review and framework for future research. Int J Behav Nutr Phys Act. 2008;5(1):34. PubMed doi:10.1186/1479-5868-5-34

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Timperio ACrawford DTelford ASalmon J. Perceptions about the local neighborhood and walking and cycling among children. Prev Med. 2004;38(1):3947. PubMed doi:10.1016/j.ypmed.2003.09.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hatfield DPChomitz VR. Increasing children’s physical activity during the school day. Curr Obes Rep. 2015;4:147156. PubMed doi:10.1007/s13679-015-0159-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Evenson KCatellier DGill KOndrak KMcMurray R. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. PubMed doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Jago RSebire STurner Ket al. Feasibility trial evaluation of a physical activity and screen-viewing course for parents of 6 to 8 year-old children: teamplay. Int J Behav Nutr Phys Act. 2013;10(1):31. PubMed doi:10.1186/1479-5868-10-31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Dössegger ARuch NJimmy Get al. Reactivity to accelerometer measurement of children and adolescents. Med Sci Sports Exerc. 2014;46(6):11401146. PubMed doi:10.1249/MSS.0000000000000215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Fairchild AMacKinnon D. A general model for testing mediation and moderation effects. Prev Sci. 2009;10(2):8799. PubMed doi:10.1007/s11121-008-0109-6

  • 43.

    Engelen LBundy ACNaughton Get al. Increasing physical activity in young primary school children—it’s child play: a cluster randomised controlled trials. Prev Med. 2013;56:319325. PubMed doi:10.1016/j.ypmed.2013.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Verstraete SJCardon GMDe Clercq DLDe Bourdeaudhuij IM. Increasing children’s physical activity levels during recess periods in elementary schools: the effects of providing game equipment. Eur J Public Health. 2006;16:415419. PubMed doi:10.1093/eurpub/ckl008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ickes MJErwin HBeighle A. Systematic review of recess interventions to increase physical activity. J Phys Act Health. 2013;10:910926. PubMed doi:10.1123/jpah.10.6.910

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Parrish A-MOkely ADBatterham MCliff DMagee C. PACE: a group randomised controlled trial to increase children’s break-time playground physical activity. J Sci Med Sport. 2016;19:413418. PubMed doi:10.1016/j.jsams.2015.04.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Stratton GMullan E. The effect of multicolor playground markings on children’s physical activity level during recess. Prev Med. 2005;41:828833. PubMed doi:10.1016/j.ypmed.2005.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Brown WHPfeiffer KAMcIver KLDowda MAddy CLPate RR. Social and environmental factors associated with preschoolers’ nonsedentary physical activity. Child Dev. 2009;80(1):4558. PubMed doi:10.1111/j.1467-8624.2008.01245.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Cardon GVan Cauwenberghe ELabarque VHaerens LDe Bourdeaudhuij I. The contribution of preschool playground factors in explaining children’s physical activity during recess. Int J Behav Nutr Phys Act. 2008;5:11. PubMed doi:10.1186/1479-5868-5-11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Faulkner GZeglen LLeatherdale SManske SStone M. The relationship between school physical activity policy and objectively measured physical activity of elementary school students: a multilevel model analysis. Arch Public Health. 2014;72(1):20. PubMed doi:10.1186/2049-3258-72-20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Coombes EJones APage ACooper AR. Is change in environmental supportiveness between primary and secondary school associated with a decline in children’s physical activity levels? Health Place. 2014;29:171178. PubMed doi:10.1016/j.healthplace.2014.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Skelton JABuehler CIrby MBGrzywacz JG. Where are family theories in family-based obesity treatment?: conceptualizing the study of families in pediatric weight management. Int J Obes. 2012;36(7):891900. PubMed doi:10.1038/ijo.2012.56

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Kitzman-Ulrich HWilson DSt. George SLawman HSegal MFairchild A. The integration of a family systems approach for understanding youth obesity, physical activity, and dietary programs. Clin Child Fam Psychol Rev. 2010;13(3):231253. PubMed doi:10.1007/s10567-010-0073-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Lavelle HVMackay DFPell JP. Systematic review and meta-analysis of school-based interventions to reduce body mass index. J Public Health. 2012;34(3):360369. PubMed doi:10.1093/pubmed/fdr116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Gubbels JSKremers SPJVan Kann DHHet al. Interaction between physical environment, social environment and child characteristics in determining physical activity at child-care. Health Psychol. 2011;30(1):8490. PubMed doi:10.1037/a0021586

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Williams AHenley WWilliams CHurst ALogan SWyatt K. Systematic review and meta-analysis of the association between childhood overweight and obesity and primary school diet and physical activity policies. Int J Behav Nutr Phys Act. 2013;10(1):101. PubMed doi:10.1186/1479-5868-10-101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Wang YCai LWu Yet al. What childhood obesity prevention programmes work? A systematic review and meta-analysis. Obes Rev. 2015;16(7):547565. PubMed doi:10.1111/obr.12277

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Van Kann DHHKremers SPJde Vries NKde Vries SIJansen MWJ. The effect of a school-centered multicomponent intervention on daily physical activity and sedentary behavior in primary school children: the active living study. Prev Med. 2016;89:6469. PubMed doi:10.1016/j.ypmed.2016.05.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    De Vries SIHopman-Rock MBakker Ivan Mechelen W. Meeting the 60-min physical activity guideline: effect of operationalization. Med Sci Sports Exerc. 2009;41(1):8186. PubMed doi:10.1249/MSS.0b013e318184c931

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 146 146 31
Full Text Views 9 9 2
PDF Downloads 3 3 2
Altmetric Badge
PubMed
Google Scholar
Cited By