Effects of Water-Based Exercise Training on the Cognitive Function and Quality of Life of Healthy Adult Women

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Research regarding the impact of aquatic exercise on cognition is scarce. This study aimed at identifying the effects of water-based exercise training on the cognitive function and quality of life of healthy adult women. Methods: Fifty-one healthy women [mean age: 46.5 (12.3) y] were assigned to group A or B and followed a water-based exercise program for 6 months. During the first 3 months, the sessions performed by group A were focused on stimulating cognitive function. For the next 3 months, the sessions were mainly aimed at improving physical fitness. Participants in group B followed the same program in reverse order. The trail making and symbol digit modality tests were used to assess the impact of the program on cognition. The effects of the intervention on the participants’ physical and mental health were measured by means of the medical outcomes study 36-item short-form health survey. Results: Once the intervention ended, significant improvements were observed in the participants’ cognitive function and mental health domain, regardless of the group in which they were initially included. Conclusion: Water-based exercise is a training modality capable of enhancing cognitive function and quality of life through improvements in mental health in healthy adult women.

Ayán is with Dept of Special Didactics, University of Vigo, Pontevedra, Spain. Carvalho, Varela, and Cancela are with HealthyFit Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Pontevedra, Spain. Carvalho, Varela, and Cancela are also with the Dept of Special Didactics, University of Vigo, Pontevedra, Spain.

Ayán (cayan@uvigo.es) is corresponding author.
  • 1.

    Kirk-Sanchez NJ, McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62. PubMed doi:10.2147/CIA.S39506

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Loyen A, Clarke-Cornwell AM, Anderssen SA. Sedentary time and physical activity surveillance through accelerometer pooling in four European countries. Sports Med. 2017;47(7):1421–1435. PubMed doi:10.1007/s40279-016-0658-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lo AH, Woodman RJ, Pachana NA, Byrne GJ, Sachdev PS. Associations between lifestyle and cognitive function over time in women aged 40–79 years. J Alzheimers Dis. 2014;39(2):371–383. PubMed doi:10.3233/JAD-130971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lo Bue-Estes C, Willer B, Burton H, et al. Short-term exercise to exhaustion and its effects on cognitive function in young women. Percept Mot Skills. 2008;107(3):933–945. PubMed doi:10.2466/pms.107.3.933-945

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Alves CRR, Gualano B, Takao PP, et al. Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise. J Sport Exerc Psychol. 2012;34(4):539–549. PubMed doi:10.1123/jsep.34.4.539

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Suominen-Troyer S, Davis KJ, Ismail AH, Salvendy G. Impact of physical fitness on strategy development in decision-making tasks. Percept Mot Skills. 1986;62(1):71–77. PubMed doi:10.2466/pms.1986.62.1.71

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dregan A, Gulliford MC. Leisure-time physical activity over the life course and cognitive functioning in late mid-adult years: a cohort-based investigation. Psychol Med. 2013;43(11):2447–2458. PubMed doi:10.1017/S0033291713000305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    McGuire A, Seib C, Anderson D. Factors predicting barriers to exercise in midlife Australian women. Maturitas. 2016;87:61–66. PubMed doi:10.1016/j.maturitas.2016.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Meredith-Jones K, Waters D, Legge M, Jones L. Upright water-based exercise to improve cardiovascular and metabolic health: a qualitative review. Complement Ther Med. 2011;19(2):93–103. PubMed doi:10.1016/j.ctim.2011.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fernández-Lao C, Cantarero-Villanueva I, Ariza-Garcia A, et al. Water versus land-based multimodal exercise program effects on body composition in breast cancer survivors: a controlled clinical trial. Support Care Cancer. 2013;21(2):521–530. PubMed doi:10.1007/s00520-012-1549-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sevimli D, Kozanoglu E, Guzel R, Doganay A. The effects of aquatic, isometric strength-stretching and aerobic exercise on physical and psychological parameters of female patients with fibromyalgia syndrome. J Phys Ther Sci. 2015;27(6):1781–1786. PubMed doi:10.1589/jpts.27.1781

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schaefer SY, Louder TJ, Foster S, Bressel E. Effect of water immersion on dual-task performance: implications for aquatic therapy. Physiother Res Int. 2015;21(3):147–154. PubMed doi:10.1002/pri.1628

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Norton K, Norton L, Lewis N. Effects of short-term physical activity interventions on simple and choice response times. Biomed Res Int. 2016;2016:5613767. PubMed doi:10.1155/2016/5613767

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    World Medical Association. World Medical Association Declaration of Helsinki ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi:10.1001/jama.2013.281053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cavaco S, Gonçalves A, Pinto C, et al. Trail making test: regression-based norms for the Portuguese population. Arch Clin Neuropsychol. 2013;28(2):189–198. PubMed doi:10.1093/arclin/acs115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Periáñez JA, Ríos-Lago M, Rodríguez-Sánchez JM, et al. Trail making test in traumatic brain injury, schizophrenia, and normal ageing: sample comparisons and normative data. Arch Clin Neuropsychol. 2007;22(4):433–447. doi:10.1016/j.acn.2007.01.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gualtieri CT, Johnson LG. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch Clin Neuropsychol. 2006;21(7):623–643. PubMed doi:10.1016/j.acn.2006.05.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Severo M, Santos AC, Lopes C, Barros H. Reliability and validity in measuring physical and mental health construct of the Portuguese version of MOS SF-36. Acta Med Port. 2006;19(4):281–287. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dennison G, Dennison P. Brain Gym: Teacher’s Edition Revised. Ventura, CA: Edu-Kinesthetics, Inc; 1994.

  • 20.

    Hyatt KJ. Brain Gym® building stronger brains or wishful thinking? Remedial Spec Educ. 2007;28(2):117–124. doi:10.1177/07419325070280020201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Spaulding LS, Mostert MP, Beam AP. Is Brain Gym® an effective educational intervention? Exceptionality. 2010;18(1):18–30. doi:10.1080/09362830903462508

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Sidiarto LD, Kusumoputro S, Samino S, Munir R, Nugroho W. The efficacy of specific patterns of movements and brain exercises on the cognitive performance of healthy senior citizen in Jakarta. Med J Indones. 2003;12(3):155–161. doi:10.13181/mji.v12i3.107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Yágüez L, Shaw KN, Morris R, Matthews D. The effects on cognitive functions of a movement-based intervention in patients with Alzheimer’s type dementia: a pilot study. Int J Geriatr Psychiatr. 2011;26(2):173–181. doi:10.1002/gps.2510

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Morgenstern U, Ketelhut K, Rösler D. Concentration enhancement for retaining daily living competence in dementia. Z Gerontol Geriatr. 2017;50(1):28–34. PubMed doi:10.1007/s00391-015-0982-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cancela JM, Vila SM, Vasconcelos J, Lima A, Ayán C. Efficacy of brain gym training on the cognitive performance and fitness level of active older adults: a preliminary study. J Aging Phys Act. 2015;23(4):653–658. PubMed doi:10.1123/japa.2014-0044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hayes SM, Alosco ML, Forman DE. The effects of aerobic exercise on cognitive and neural decline in aging and cardiovascular disease. Curr Geriatr Rep. 2014;3(4):282–290. PubMed doi:10.1007/s13670-014-0101-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Scott SP, De Souza MJ, Koehler K, Petkus DL, Murray-Kolb LE. Cardiorespiratory fitness is associated with better executive function in young women. Med Sci Sports Exerc. 2016;48(10):1994–2002. PubMed doi:10.1249/MSS.0000000000000974

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cassilhas RC, Viana VA, Grassmann V, et al. The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc. 2007;39(8):1401–1407. PubMed doi:10.1249/mss.0b013e318060111f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sherlock LA, Hornsby WG Jr, Rye J. Physiological effects of aquatic exercise on cognitive function in the aging population. IJARE. 2013;7(3):266–278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Fedor A, García S, Gunstad J. The effects of a brief, water-based exercise intervention on cognitive function in older adults. Arch Clin Neuropsychol. 2015;30(2):139–147. PubMed doi:10.1093/arclin/acv001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sato D, Seko C, Hashitomi T, Sengoku Y, Nomura T. Differential effects of water-based exercise on the cognitive function in independent elderly adults. Aging Clin Exp Res. 2015;27(2):149–159. PubMed doi:10.1007/s40520-014-0252-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hawkins HL, Kramer AF, Capaldi D. Aging, exercise, and attention. Psychol Aging. 1992;7(4):643–653. PubMed doi:10.1037/0882-7974.7.4.643

  • 33.

    Munguía-Izquierdo D, Legaz-Arrese A. Exercise in warm water decreases pain and improves cognitive function in middle-aged women with fibromyalgia. Clin Exp Rheumatol. 2007;25(6):823–830.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kargarfard M, Etemadifar M, Baker P, Mehrabi M, Hayatbakhsh R. Effect of aquatic exercise training on fatigue and health-related quality of life in patients with multiple sclerosis. Arch Phys Med Rehabil. 2012;93(10):1701–1708. PubMed doi:10.1016/j.apmr.2012.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Waller B, Ogonowska-Słodownik A, Vitor M, et al. The effect of aquatic exercise on physical functioning in the older adult: a systematic review with meta-analysis. Age Ageing. 2016;45(5):594–602. PubMed doi:10.1093/ageing/afw102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Schuch FB, Schoenell MCW, Tiggemann CL, et al. The effects of water-based strength exercise on quality of life in young women. Sport Sci Health. 2016;12(1):105–112. doi:10.1007/s11332-016-0261-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Schuch FB, Pinto SS, Bagatini NC, et al. Water-based exercise and quality of life in women: the role of depressive symptoms. Women Health. 2014;54(2):161–175. PubMed doi:10.1080/03630242.2013.870634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tomas-Carus P, Häkkinen A, Gusi N, et al. Aquatic training and detraining on fitness and quality of life in fibromyalgia. Med Sci Sports Exerc. 2007;39(7):1044–1050. PubMed doi:10.1249/01.mss.0b0138059aec4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bocalini DS, Serra AJ, Rica RL, Santos LD. Repercussions of training and detraining by water-based exercise on functional fitness and quality of life: a short-term follow-up in healthy older women. Clinics. 2010;65(12):1305–1309. PubMed doi:10.1590/S1807-59322010001200013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 158 158 45
Full Text Views 6 6 1
PDF Downloads 0 0 0