The Impact of Low Accelerometer Wear Time on the Estimates and Application of Sedentary Behavior and Physical Activity Data in Adults

in Journal of Physical Activity and Health

Click name to view affiliation

Ryan McGrath
Search for other papers by Ryan McGrath in
Current site
Google Scholar
PubMed
Close
,
Chantal A. Vella
Search for other papers by Chantal A. Vella in
Current site
Google Scholar
PubMed
Close
,
Philip W. Scruggs
Search for other papers by Philip W. Scruggs in
Current site
Google Scholar
PubMed
Close
,
Mark D. Peterson
Search for other papers by Mark D. Peterson in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Williams
Search for other papers by Christopher J. Williams in
Current site
Google Scholar
PubMed
Close
, and
David R. Paul
Search for other papers by David R. Paul in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: This investigation sought to determine how accelerometer wear (1) biased estimates of sedentary behavior (SB) and physical activity (PA), (2) affected misclassifications for meeting the Physical Activity Guidelines for Americans, and (3) impacted the results of regression models examining the association between moderate to vigorous physical activity (MVPA) and a clinically relevant health outcome. Methods: A total of 100 participants [age: 20.6 (7.9) y] wore an ActiGraph GT3X+ accelerometer for 15.9 (1.6) hours per day (reference dataset) on the hip. The BOD POD was used to determine body fat percentage. A data removal technique was applied to the reference dataset to create individual datasets with wear time ranging from 15 to 10 hours per day for SB and each intensity of PA. Results: Underestimations of SB and each intensity of PA increased as accelerometer wear time decreased by up to 167.2 minutes per day. These underestimations resulted in Physical Activity Guidelines for Americans misclassification rates of up to 42.9%. The regression models for the association between MVPA and body fat percentage demonstrated changes in the estimates for each wear-time adherence level when compared to the model using the reference MVPA data. Conclusions: Increasing accelerometer wear improves daily estimates of SB and PA, thereby also improving the precision of statistical inferences that are made from accelerometer data.

McGrath, Vella, Scruggs, and Paul are with the Dept of Movement Sciences, University of Idaho, Moscow, ID. McGrath and Peterson are with the Dept of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI. Williams is with the Dept of Statistical Science, University of Idaho, Moscow, ID.

McGrath (mcgratry@med.umich.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Matthews CE, Chen KY, Freedson PS, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875881. PubMed doi:10.1093/aje/kwm390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181188. PubMed doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Heil DP, Brage S, Rothney MP. Modeling physical activity outcomes from wearable monitors. Med Sci Sports Exerc. 2012;44(1)(suppl 1):5060. PubMed doi:10.1249/MSS.0b013e3182399dcc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Matthews CE, Hagstromer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44(1)(suppl 1):S68S76. PubMed doi:10.1249/MSS.0b013e3182399e5b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tudor-Locke C, Camhi SM, Troiano RP. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003–2006. Prev Chronic Dis. 2012;9:E113. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pavey TG, Gomersall SR, Clark BK, Brown WJ. The validity of the GENEActiv wrist-worn accelerometer for measuring adult sedentary time in free living. J Sci Med Sport. 2016;19(5):395399. PubMed doi:10.1016/j.jsams.2015.04.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Forsyth A, Oakes JM, Lee B, Schmitz KH. The built environment, walking, and physical activity: is the environment more important to some people than others? Transp Res D Transp Environ. 2009;14(1):4249. doi:10.1016/j.trd.2008.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Winkler EA, Gardiner PA, Clark BK, Matthews CE, Owen N, Healy GN. Identifying sedentary time using automated estimates of accelerometer wear time. Br J Sports Med. 2012;46(6):436442. PubMed doi:10.1136/bjsm.2010.079699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Herrmann SD, Barreira TV, Kang M, Ainsworth BE. How many hours are enough? Accelerometer wear time may provide bias in daily activity estimates. J Phys Act Health. 2013;10(5):742749. PubMed doi:10.1123/jpah.10.5.742

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Herrmann SD, Barreira TV, Kang M, Ainsworth BE. Impact of accelerometer wear time on physical activity data: a NHANES semisimulation data approach. Br J Sports Med. 2014;48(3):278282. PubMed doi:10.1136/bjsports-2012-091410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Colley R, Connor Gorber S, Tremblay MS. Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep. 2010;21(1):6369. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Paul DR, Kramer M, Stote KS, et al. Estimates of adherence and error analysis of physical activity data collected via accelerometry in a large study of free-living adults. BMC Med Res Methodol. 2008;8:38. PubMed doi:10.1186/1471-2288-8-38

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Janssen X, Basterfield L, Parkinson KN, et al. Objective measurement of sedentary behavior: impact of non-wear time rules on changes in sedentary time. BMC Public Health. 2015;15(1):504. doi:10.1186/s12889-015-1847-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Balady GJ, Chaitman B, Driscoll D, et al. Recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Circulation. 1998;97(22):22832293. PubMed doi:10.1161/01.CIR.97.22.2283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Thomas S, Reading J, Shephard RJ. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can J Sport Sci. 1992;17(4):338345. PubMed

  • 16.

    Feito Y, Bassett DR, Thompson DL. Evaluation of activity monitors in controlled and free-living environments. Med Sci Sports Exerc. 2012;44(4):733741. PubMed doi:10.1249/MSS.0b013e3182351913

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A, eds. Techniques for Measuring Body Composition. Vol 61. Washington, DC: National Academy of Sciences; 1961:223244.

    • Search Google Scholar
    • Export Citation
  • 18.

    von Hurst PR, Walsh DCI, Conlon CA, Ingram M, Kruger R, Stonehouse W. Validity and reliability of bioelectrical impedance analysis to estimate body fat percentage against air displacement plethysmography and dual-energy X-ray absorptiometry. Nutr Diet. 2016;73(2):197204. doi:10.1111/1747-0080.12172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Chen KY, Janz KF, Zhu W, Brychta RJ. Redefining the roles of sensors in objective physical activity monitoring. Med Sci Sports Exerc. 2012;44(1)(suppl 1):S13S23. PubMed doi:10.1249/MSS.0b013e3182399bc8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hoos MB, Kuipers H, Gerver WJ, Westerterp KR. Physical activity pattern of children assessed by triaxial accelerometry. Eur J Clin Nutr. 2004;58(10):14251428. PubMed doi:10.1038/sj.ejcn.1601991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357364. PubMed doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14(5):411416. PubMed doi:10.1016/j.jsams.2011.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):15611567. PubMed doi:10.1249/MSS.0b013e31820ce174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tucker JM, Welk GJ, Beyler NK. Physical activity in U.S.: adults compliance with the physical activity guidelines for Americans. Am J Prev Med. 2011;40(4):454461. PubMed doi:10.1016/j.amepre.2010.12.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Physical Activity Guidelines for Americans. Office of Disease Prevention and Health Promotion Website. 2008. http://health.gov/paguidelines/pdf/paguide.pdf. Accessed May 25, 2016.

    • Search Google Scholar
    • Export Citation
  • 26.

    Loprinzi PD, Lee H, Cardinal BJ, Crespo CJ, Andersen RE, Smit E. The relationship of actigraph accelerometer cut-points for estimating physical activity with selected health outcomes: results from NHANES 2003–06. Res Q Exerc Sport. 2012;83(3):422430. PubMed doi:10.1080/02701367.2012.10599877

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Matthews CE, Moore SC, George SM, Sampson J, Bowles HR. Improving self-reports of active and sedentary behaviors in large epidemiologic studies. Exerc Sport Sci Rev. 2012;40(3):118126. PubMed doi:10.1097/JES.0b013e31825b34a0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Manini TM, Everhart JE, Patel KV, et al. Daily activity energy expenditure and mortality among older adults. JAMA. 2006;296(2):171179. PubMed doi:10.1001/jama.296.2.171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lee PH. A sensitivity analysis on the variability in accelerometer data processing for monitoring physical activity. Gait Posture. 2015;41(2):516521. PubMed doi:10.1016/j.gaitpost.2014.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wijndaele K, Westgate K, Stephens SK, et al. Utilization and harmonization of adult accelerometry data: review and expert consensus. Med Sci Sports Exerc. 2015;47(10):21292139. PubMed doi:10.1249/MSS.0000000000000661

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Troiano RP. A timely meeting: objective measurement of physical activity. Med Sci Sports Exerc. 2005;37(11)(suppl):S487S489. PubMed doi:10.1249/01.mss.0000185473.32846.c3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Masse LC, Fuemmeler BF, Anderson CB, et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37(11)(suppl):S544S554. PubMed doi:10.1249/01.mss.0000185674.09066.8a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Baranowski T, Masse LC, Ragan B, Welk G. How many days was that? We’re still not sure, but we’re asking the question better! Med Sci Sports Exerc. 2008;40(7)(suppl):S544S549. PubMed doi:10.1249/MSS.0b013e31817c6651

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;48(13):10191023. PubMed doi:10.1136/bjsports-2014-093546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kamada M, Shiroma EJ, Harris TB, Lee I-M. Comparison of physical activity assessed using hip-and wrist-worn accelerometers. Gait Posture. 2016;44:2328. PubMed doi:10.1016/j.gaitpost.2015.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Loprinzi PD, Smith B. Comparison between wrist-worn and waist-worn accelerometry. J Phys Act Health. 2017;14(7):539545. PubMed doi:10.1123/jpah.2016-0211

  • 37.

    Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med Sci Sports Exerc. 2013;45(5):964975. PubMed doi:10.1249/MSS.0b013e31827f0d9c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2150 615 16
Full Text Views 38 3 2
PDF Downloads 29 4 2