Effect of Exercise Training on Cardiac Biomarkers in At-Risk Populations: A Systematic Review

in Journal of Physical Activity and Health

Click name to view affiliation

Susan Sullivan Glenney
Search for other papers by Susan Sullivan Glenney in
Current site
Google Scholar
PubMed
Close
,
Derrick Paul Brockemer
Search for other papers by Derrick Paul Brockemer in
Current site
Google Scholar
PubMed
Close
,
Andy C. Ng
Search for other papers by Andy C. Ng in
Current site
Google Scholar
PubMed
Close
,
Michael A. Smolewski
Search for other papers by Michael A. Smolewski in
Current site
Google Scholar
PubMed
Close
,
Vladimir M. Smolgovskiy
Search for other papers by Vladimir M. Smolgovskiy in
Current site
Google Scholar
PubMed
Close
, and
Adam S. Lepley
Search for other papers by Adam S. Lepley in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Studies have demonstrated beneficial effects of exercise on cardiovascular disease biomarkers for healthy individuals; however, a comprehensive review regarding the effect of exercise on cardiovascular disease biomarkers in at-risk populations is lacking. Methods: A literature search was performed to identify studies meeting the following criteria: randomized controlled study, participants with pathology/activity limitations, biomarker outcome (total cholesterol, high-density lipoprotein, low-density lipoprotein, C-reactive protein, insulin, triglycerides, or glucose), and exercise intervention. Means and standard deviations from each biomarker were used to calculate standardized Cohen’s d effect sizes with 95% confidence intervals. Results: In total, 37 articles were included. The majority (44/57; 77%) of data points demonstrated moderate to strong effects for the reduction in total cholesterol, triglycerides, and low-density lipoprotein, and elevation in high-density lipoprotein following exercise. The majority of data points demonstrated strong effects for reductions in blood glucose (24/30; 80%) and insulin (23/24; 96%) levels following exercise intervention. Conclusion: Evidence is heterogeneous regarding the influence of exercise on cardiovascular disease biomarkers in at-risk patients, which does not allow a definitive conclusion. Favorable effects include reductions in triglycerides, total cholesterol, low-density lipoprotein, glucose, and insulin, and elevation in high-density lipoprotein following exercise intervention. The strongest evidence indicates that exercise is favorable for the reduction in glucose and cholesterol levels among obese patients, and reduction of insulin regardless of population.

Glenney, Brockemer, Ng, Smolewski, Smolgovskiy, and Lepley are with the Dept of Kinesiology, Doctor of Physical Therapy Program, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT. Smolewski is also with the Nola Physical Therapy, New York, NY.

Lepley (adam.lepley@uconn.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):28292. PubMed doi:10.1161/01.cir.0000441139.02102.80

    • Search Google Scholar
    • Export Citation
  • 2.

    McGuire S. U.S. Department of Agriculture and U.S. Department of Health and Human Services, Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office, January 2011. Adv Nutr. 2011;2(3):293294. PubMed doi:10.3945/an.111.000430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Pearson TA, Blair SN, Daniels SR, et al. AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation. 2002;106(3):388391. PubMed doi:10.1161/01.CIR.0000020190.45892.75

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Smith SC Jr, Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. J Am Coll Cardiol. 2011;58(23):24322446. PubMed doi:10.1016/j.jacc.2011.10.824

    • Search Google Scholar
    • Export Citation
  • 5.

    Lin X, Zhang X, Guo J, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(7):e002014. PubMed doi:10.1161/JAHA.115.002014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kraemer WJ, Ratamess NA, French DN. Resistance training for health and performance. Curr Sports Med Rep. 2002;1(3):165171. PubMed doi:10.1249/00149619-200206000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McCartney N, McKelvie RS, Martin J, Sale DG, MacDougall JD. Weight-training-induced attenuation of the circulatory response of older males to weight lifting. J Appl Physiol (1985). 1993;74(3):10561060. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sale DG, Moroz DE, McKelvie RS, MacDougall JD, McCartney N. Effect of training on the blood pressure response to weight lifting. Can J Appl Physiol. 1994;19(1):6074. PubMed doi:10.1139/h94-004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol. 1983;45:169189. PubMed doi:10.1146/annurev.ph.45.030183.001125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Schaible TF, Scheuer J. Cardiac adaptations to chronic exercise. Prog Cardiovasc Dis. 1985;27(5):297324. PubMed doi:10.1016/S0033-0620(85)80001-3

  • 11.

    Cohen J. Statistical Power Analysis for Behavioral Sciences. New York, NY: Academic Press; 1977.

    • Export Citation
  • 12.

    Ahmadi N, Moghadasi M, Nuri R. Changes of serum retinol binding protein 4 levels following 8 weeks moderate aerobic exercise. Asian J Sports Med. 2013;4(3):208212. PubMed doi:10.5812/asjsm.34283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ahmadizad S, Ghorbani S, Ghasemikaram M, Bahmanzadeh M. Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clin Biochem. 2014;47(6):417422. PubMed doi:10.1016/j.clinbiochem.2013.12.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ahmadizad S, Haghighi AH, Hamedinia MR. Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. Eur J Endocrinol. 2007;157(5):625631. PubMed doi:10.1530/EJE-07-0223

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Amouzad Mahdirejei H, Fadaei Reyhan Abadei S, Abbaspour Seidi A, et al. Effects of an eight-week resistance training on plasma vaspin concentrations, metabolic parameters levels and physical fitness in patients with type 2 diabetes. Cell J. 2014;16(3):367374. PubMed

    • Search Google Scholar
    • Export Citation
  • 16.

    Araiza P, Hewes H, Gashetewa C, Vella CA, Burge MR. Efficacy of a pedometer-based physical activity program on parameters of diabetes control in type 2 diabetes mellitus. Metabolism. 2006;55(10):13821387. PubMed doi:10.1016/j.metabol.2006.06.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Azarbayjani MA, Rassaee M, Peeri M, Stannard S. Effects of combined endurance and resistant training on lipid profile and glycemic control in sedentary men. Int Med J. 2014;21(2):132136.

    • Search Google Scholar
    • Export Citation
  • 18.

    Baldi JC, Snowling N. Resistance training improves glycaemic control in obese type 2 diabetic men. Int J Sports Med. 2003;24(6):419423. PubMed doi:10.1055/s-2003-41173

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bell GJ, Harber V, Murray T, Courneya KS, Rodgers W. A comparison of fitness training to a pedometer-based walking program matched for total energy cost. J Phys Act Health. 2010;7(2):203213. PubMed doi:10.1123/jpah.7.2.203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bijeh N, Hosseini SA, Hejazi K. The effect of endurance exercise on serum C-reactive protein and leptin levels in untrained middle-aged women. Iran J Public Health. 2012;41(9):3641. PubMed

    • Search Google Scholar
    • Export Citation
  • 21.

    Chatzinikolaou A, Fatouros IG, Gourgoulis V, et al. Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res. 2010;24(5):13891398. PubMed doi:10.1519/JSC.0b013e3181d1d318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cho JK, Lee SH, Lee JY, Kang HS. Randomized controlled trial of training intensity in adiposity. Int J Sports Med. 2011;32(6):468475. PubMed doi:10.1055/s-0031-1271789

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ciolac EG, Bocchi EA, Greve JM, Guimaraes GV. Heart rate response to exercise and cardiorespiratory fitness of young women at high familial risk for hypertension: effects of interval vs continuous training. Eur J Cardiovasc Prev Rehabil. 2011;18(6):824830. PubMed doi:10.1177/1741826711398426

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Coghill N, Cooper AR. The effect of a home-based walking program on risk factors for coronary heart disease in hypercholesterolaemic men. A randomized controlled trial. Prev Med. 2008;46(6):545551. PubMed doi:10.1016/j.ypmed.2008.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Eicher JD, Maresh CM, Tsongalis GJ, Thompson PD, Pescatello LS. The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am Heart J. 2010;160(3):513520. PubMed doi:10.1016/j.ahj.2010.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fritz T, Wandell P, Aberg H, Engfeldt P. Walking for exercise—does three times per week influence risk factors in type 2 diabetes? Diabetes Res Clin Pract. 2006;71(1):2127. PubMed doi:10.1016/j.diabres.2005.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gray SR, Baker G, Wright A, et al. The effect of a 12 week walking intervention on markers of insulin resistance and systemic inflammation. Prev Med. 2009;48(1):3944. PubMed doi:10.1016/j.ypmed.2008.10.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hasani-Ranjbar S, Soleymani Far E, Heshmat R, Rajabi H, Kosari H. Time course responses of serum GH, insulin, IGF-1, IGFBP1, and IGFBP3 concentrations after heavy resistance exercise in trained and untrained men. Endocrine. 2012;41(1):144151. PubMed doi:10.1007/s12020-011-9537-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hewitt JA, Whyte GP, Moreton M, van Someren KA, Levine TS. The effects of a graduated endurance exercise programme on cardiovascular disease risk factors in the NHS workplace: a randomised controlled trial. J Occup Med Toxicol. 2008;3:7. PubMed doi:10.1186/1745-6673-3-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes. 2012;2012:18. PubMed doi:10.1155/2012/480467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Irving BA, Weltman JY, Patrie JT, et al. Effects of exercise training intensity on nocturnal growth hormone secretion in obese adults with the metabolic syndrome. J Clin Endocrinol Metab. 2009;94(6):19791986. PubMed doi:10.1210/jc.2008-2256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jamurtas AZ, Garyfallopoulou A, Theodorou AA, et al. A single bout of downhill running transiently increases HOMA-IR without altering adipokine response in healthy adult women. Eur J Appl Physiol. 2013;113(12):29252932. PubMed doi:10.1007/s00421-013-2717-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kyriazis GA, Caplan JD, Lowndes J, et al. Moderate exercise-induced energy expenditure does not alter leptin levels in sedentary obese men. Clin J Sport Med. 2007;17(1):4951. PubMed doi:10.1097/JSM.0b013e31802e9c38

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mohammadi A, Alikhajehlandi RPV. Impact of endurance exercise training on insulin resistance and plasma lipocalin 2 levels in obese young men. Biomed Pharmacol J. 2014;7(1):4752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Mohammadi A, Khajehlandi A. Hs-CRP and adipokin (Lcn2): response to exercise training in obese men. Biomed Pharmacol J. 2014;7(1):1722. doi:10.13005/bpj/447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Murphy MH, Murtagh EM, Boreham CA, Hare LG, Nevill AM. The effect of a worksite based walking programme on cardiovascular risk in previously sedentary civil servants [NCT00284479]. BMC Public Health. 2006;6:136. PubMed doi:10.1186/1471-2458-6-136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Najafi A, Najafian M, Solhjoo MH. The effect of endurance and resistance exercises on leptin, estrogen and progesterone levels in non-athletic middle-aged men. Adv Environ Biol. 2012;6(8):2415.

    • Search Google Scholar
    • Export Citation
  • 38.

    Nikseresht M, Agha-Alinejad H, Azarbayjani MA, Ebrahim K. Effects of nonlinear resistance and aerobic interval training on cytokines and insulin resistance in sedentary men who are obese. J Strength Cond Res. 2014;28(9):25602568. PubMed doi:10.1519/JSC.0000000000000441

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    O’Donovan G, Kearney EM, Nevill AM, Woolf-May K, Bird SR. The effects of 24 weeks of moderate- or high-intensity exercise on insulin resistance. Eur J Appl Physiol. 2005;95(5–6):522528. doi:10.1007/s00421-005-0040-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Reichkendler MH, Rosenkilde M, Auerbach PL, et al. Only minor additional metabolic health benefits of high as opposed to moderate dose physical exercise in young, moderately overweight men. Obesity (Silver Spring). 2014;22(5):12201232. PubMed doi:10.1002/oby.20226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Roberts CK, Croymans DM, Aziz N, Butch AW, Lee CC. Resistance training increases SHBG in overweight/obese, young men. Metabolism. 2013;62(5):725733. PubMed doi:10.1016/j.metabol.2012.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Saremi A, Parastesh M. Twelve-week resistance training decreases myostatin level and improves insulin sensitivity in overweight-obese women. Int J Diabetes Metab. 2011;19:6368.

    • Search Google Scholar
    • Export Citation
  • 43.

    Saremi A, Shavandi N, Parastesh M, Daneshmand H. Twelve-week aerobic training decreases chemerin level and improves cardiometabolic risk factors in overweight and obese men. Asian J Sports Med. 2010;1(3):151158. PubMed doi:10.5812/asjsm.34860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Slentz CA, Houmard JA, Johnson JL, et al. Inactivity, exercise training and detraining, and plasma lipoproteins. STRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol (1985). 2007;103(2):432442. PubMed doi:10.1152/japplphysiol.01314.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Slentz CA, Tanner CJ, Bateman LA, et al. Effects of exercise training intensity on pancreatic beta-cell function. Diabetes Care. 2009;32(10):18071811. PubMed doi:10.2337/dc09-0032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Tanaka H, Bassett DR Jr, Howley ET. Effects of swim training on body weight, carbohydrate metabolism, lipid and lipoprotein profile. Clin Physiol. 1997;17(4):347359. PubMed doi:10.1046/j.1365-2281.1997.03939.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes (Lond). 2008;32(4):684691. doi:10.1038/sj.ijo.0803781

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Vainionpaa A, Korpelainen R, Kaikkonen H, Knip M, Leppaluoto J, Jamsa T. Effect of impact exercise on physical performance and cardiovascular risk factors. Med Sci Sports Exerc. 2007;39(5):756763. PubMed doi:10.1249/mss.0b013e318031c039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2182 921 61
Full Text Views 27 10 0
PDF Downloads 39 22 1