Cancer-Specific Mortality Relative to Engagement in Muscle-Strengthening Activities and Lower Extremity Strength

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Methods: Data from the 1999–2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. Results: With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29–0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45–1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Conclusions: Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.

Dankel, Loenneke, and Loprinzi are with the Dept of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS.

Loprinzi (pdloprin@olemiss.edu) is corresponding author.
  • 1.

    Artero EG, Lee D, Ruiz JR, et al. A prospective study of muscular strength and all-cause mortality in men with hypertension. J Am Coll Cardiol. 2011;57(18):1831–1837. PubMed doi:10.1016/j.jacc.2010.12.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    FitzGerald S, Barlow C, Kampert J, Morrow J, Jackson A, Blair S. Muscular fitness and all-cause mortality: prospective observations. J Phys Act Health. 2004;1:7–18. doi:10.1123/jpah.1.1.7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–77. PubMed doi:10.1093/gerona/61.1.72

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Loprinzi PD, Loenneke JP. Evidence of a link between grip strength and type 2 diabetes prevalence and severity among a national sample of U.S. adults. J Phys Act Health. 2016;13(5):558–561. doi:10.1123/jpah.2015-0241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Loprinzi PD, Loenneke JP. Lower extremity muscular strength and leukocyte telomere length: implications of muscular strength in attenuating age-related chronic disease. J Phys Act Health. 2016;13(4):454–457. doi:10.1123/jpah.2015-0120

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–2917. PubMed doi:10.1002/ijc.25516

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ruiz JR, Sui X, Lobelo F, et al. Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1468–1476. PubMed doi:10.1158/1055-9965.EPI-08-1075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ruiz JR, Sui X, Lobelo F, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:439. PubMed doi:10.1136/bmj.a439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ortega FB, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ. 2012;345:e7279. PubMed doi:10.1136/bmj.e7279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sasaki H, Kasagi F, Yamada M, Fujita S. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med. 2007;120(4):337–342. PubMed doi:10.1016/j.amjmed.2006.04.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rantanen T, Volpato S, Ferrucci L, Heikkinen E, Fried LP, Guralnik JM. Handgrip strength and cause-specific and total mortality in older disabled women: exploring the mechanism. J Am Geriatr Soc. 2003;51(5):636–641. PubMed doi:10.1034/j.1600-0579.2003.00207.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36(1):228–235. PubMed doi:10.1093/ije/dyl224

  • 13.

    Fujita Y, Nakamura Y, Hiraoka J, et al. Physical-strength tests and mortality among visitors to health-promotion centers in Japan. J Clin Epidemiol. 1995;48(11):1349–1359. PubMed doi:10.1016/0895-4356(95)00533-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med. 2015;26(5):303–310. PubMed doi:10.1016/j.ejim.2015.04.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    The United States Department of Health and Human Services. Physical Activity Guidelines Advisory Committee Report. 2008. https://health.gov/paguidelines/pdf/paguide.pdf

    • Search Google Scholar
    • Export Citation
  • 16.

    Schoenborn CA, Stommel M. Adherence to the 2008 adult physical activity guidelines and mortality risk. Am J Prev Med. 2011;40(5):514–521. PubMed doi:10.1016/j.amepre.2010.12.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Zhao G, Li C, Ford ES, et al. Leisure-time aerobic physical activity, muscle-strengthening activity and mortality risks among US adults: the NHANES linked mortality study. Br J Sports Med. 2014;48(3):244–249. doi:10.1136/bjsports-2013-092731

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dankel SJ, Loenneke JP, Loprinzi PD. Determining the importance of meeting muscle-strengthening activity guidelines. Mayo Clin Proc. 2016;91(2):166–174. PubMed doi:10.1016/j.mayocp.2015.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hubal MJ, Gordish-Dressman H, Thompson PD, et al. Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc. 2005;37(6):964–972. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Dankel SJ, Loenneke JP, Loprinzi PD. Participation in muscle-strengthening activities as an alternative method for the prevention of multimorbidity. Prev Med. 2015;81:54–57. PubMed doi:10.1016/j.ypmed.2015.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Dankel SJ, Loenneke JP, Loprinzi PD. Does the fat-but-fit paradigm hold true for all-cause mortality when considering the duration of overweight/obesity? Analyzing the WATCH (Weight, Activity and Time Contributes to Health) paradigm. Prev Med. 2016;83:37–40. PubMed doi:10.1016/j.ypmed.2015.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Katzmarzyk PT, Craig CL. Musculoskeletal fitness and risk of mortality. Med Sci Sports Exerc. 2002;34(5):740–744. PubMed doi:10.1097/00005768-200205000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tredinnick TJ, Duncan PW. Reliability of measurements of concentric and eccentric isokinetic loading. Phys Ther. 1988;68(5):656–659. PubMed doi:10.1093/ptj/68.5.656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dankel SJ, Loenneke JP, Loprinzi PD. Combined associations of muscle-strengthening activities and accelerometer-assessed physical activity on multimorbidity: findings from NHANES. Am J Health Promot. 2017;31(4):274–277. doi:10.4278/ajhp.150520-QUAN-894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Loprinzi PD. Dose–response association of moderate-to-vigorous physical activity with cardiovascular biomarkers and all-cause mortality: considerations by individual sports, exercise and recreational physical activities. Prev Med. 2015;81:73–77. PubMed doi:10.1016/j.ypmed.2015.08.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Endogenous Hormones and Breast Cancer Collaborative Group, Key TJ, Appleby PN, et al. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer. 2011;105(5):709–722. PubMed doi:10.1038/bjc.2011.254

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hou L, Joyce BT, Gao T, et al. Blood telomere length attrition and cancer development in the normative aging study cohort. EBioMedicine. 2015;2(6):591–596. PubMed doi:10.1016/j.ebiom.2015.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wu X, Amos CI, Zhu Y, et al. Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst. 2003;95(16):1211–1218. PubMed doi:10.1093/jnci/djg011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gu J. Leukocyte telomere length and cancer risk: a dynamic problem. EBioMedicine. 2015;2(6):493–494. PubMed doi:10.1016/j.ebiom.2015.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ludlow AT, Roth SM, Ludlow AT, Roth SM. Physical activity and telomere biology: exploring the link with aging-related disease prevention, physical activity and telomere biology: exploring the link with aging-related disease prevention. J Aging Res. 2011;2011:e790378. doi:10.4061/2011/790378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Chen L, Nelson DR, Zhao Y, Cui Z, Johnston JA. Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States. BMC Geriatr. 2013;13:74. PubMed doi:10.1186/1471-2318-13-74

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Conger SA, Guo J, Fulkerson SM, Pedigo L, Chen H, Bassett DR. Objective assessment of strength training exercises using a wrist-worn accelerometer. Med Sci Sports Exerc. 2016;48(9):1847–1855. PubMed doi:10.1249/MSS.0000000000000949

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 81 81 15
Full Text Views 0 0 0
PDF Downloads 0 0 0