Physical Activity and Sedentary Time Patterns in Children and Adolescents With Cystic Fibrosis and Age- and Sex-Matched Healthy Controls

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Regular physical activity (PA) is increasingly recognized as important in the care of patients with cystic fibrosis (CF), but there is a dearth of evidence regarding physical activity levels or how these are accrued in those with CF. Methods: PA was measured by a hip-worn accelerometer for 7 consecutive days in 18 children [10 boys; 12.4 (2.8) y] with mild to moderate CF and 18 age- and sex-matched controls [10 boys; 12.5 (2.7) y]. Results: Both children with CF and healthy children demonstrated similar physical activity levels and patterns of accumulation across the intensity spectrum, with higher levels of PA during weekdays in both groups. Forced expiratory volume in 1 second was predicted by high light PA in children with CF compared with low light PA in healthy children. Conclusion: These findings highlight weekends and light PA as areas warranting further research for the development of effective intervention strategies to increase PA in the youth CF population.

Mackintosh and McNarry are with the A-STEM, College of Engineering, Swansea University, Wales, United Kingdom. Ridgers is with the Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia. Evans is with the Dept of Child Health, Morriston Hospital, Swansea, Wales, United Kingdom.

Mackintosh (k.mackintosh@swansea.ac.uk) is corresponding author.
  • 1.

    Quinton PM. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 1990;4:27092717. PubMed

  • 2.

    Cystic Fibrosis Foundation. Patient Registry: Annual Report 2012. 2012. http://www.cysticfibrosisdata.org/LiteratureRetrieve.aspx?ID=149756. Accessed date August 27, 2016.

    • Search Google Scholar
    • Export Citation
  • 3.

    Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. PubMed doi:10.1186/1479-5868-7-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Schneiderman-Walker J, Pollock SL, Corey M, et al. A randomized controlled trial of a 3-year home exercise program in cystic fibrosis. J Pediatr. 2000;136:304310. PubMed doi:10.1067/mpd.2000.103408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wilkes DL, Schneiderman-Walker J, Corey M, et al. Long-term effect of habitual physical activity on lung health in patients with cystic fibrosis. Pediatr Pulmonol. 2007;43(3):358359.

    • Search Google Scholar
    • Export Citation
  • 6.

    Selvadurai HC, Blimkie CJ, Cooper PJ, Mellis C, Van Asperen PP. Gender differences in habitual activity in children with cystic fibrosis. Arch Dis Child. 2004;89:928933. PubMed doi:10.1136/adc.2003.034249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Buntain HM, Greer RM, Schluter PJ, et al. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study. Thorax. 2004;59:149155. PubMed doi:10.1136/thorax.2003.006726

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McIlwaine M. Chest physical therapy, breathing techniques and exercise in children with CF. Paediatr Respir Rev. 2007;8:816. PubMed doi:10.1016/j.prrv.2007.02.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hebestreit A, Kersting U, Basler B, Jeschke R, Hebestreit H. Exercise inhibits epithelial sodium channels in patients with cystic fibrosis. Am J Respir Crit Care Med. 2001;164:443446. PubMed doi:10.1164/ajrccm.164.3.2007168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nixon PA, Orenstein DM, Kelsey SF. Habitual physical activity in children and adolescents with cystic fibrosis. Med Sci Sports Exerc. 2001;33:3035. doi:10.1097/00005768-200101000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF. The prognostic value of exercise testing in patients with cystic-fibrosis. N Engl J Med. 1992;327:17851788. PubMed doi:10.1056/NEJM199212173272504

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Aznar S, Gallardo C, Fiuza-Luces C, et al. Levels of moderate–vigorous physical activity are low in Spanish children with cystic fibrosis: a comparison with healthy controls. J Cyst Fibros. 2014;13:335340. PubMed doi:10.1016/j.jcf.2013.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Department of Health Physical Activity Health Improvement and Protection. Start Active, Stay Active: A Report on Physical Activity From the Four Home Countries’ Chief Medical Officers. London, UK: Department of Health; 2011.

    • Search Google Scholar
    • Export Citation
  • 14.

    Radtke T, Nolan SJ, Hebestreit H, Kriemler S. Physical exercise training for cystic fibrosis. Cochrane Database Syst Rev. 2015;(6):CD002768. doi:10.1002/14651858.CD002768.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sport Sci. 2008;26:15571565. doi:10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jantzen A, Opoku-Pare M, Bieli C, Ruf K, Hebestreit H, Moeller A. Perspective on cystic fibrosis and physical activity: is there a difference compared to healthy individuals? Pediatr Pulmonol. 2016;51:10201030. doi:10.1002/ppul.23532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Trost SG, Wong WK, Pfeiffer KA, Zheng Y. Artificial neural networks to predict activity type and energy expenditure in youth. Med Sci Sports Exerc. 2012;44:18011809. doi:10.1249/MSS.0b013e318258ac11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Britto MT, Garrett JM, Konrad TR, Majure JM, Leigh MW. Comparison of physical activity in adolescents with cystic fibrosis versus age-matched controls. Pediatr Pulmonol. 2000;30:8691. PubMed doi:10.1002/1099-0496(200008)30:2<86::AID-PPUL2>3.0.CO;2-Z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Carson V, Ridgers ND, Howard BJ, et al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS ONE. 2013;8:71417. PubMed doi:10.1371/journal.pone.0071417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Schneiderman JE, Wilkes DL, Atenafu EG, et al. Longitudinal relationship between physical activity and lung health in patients with cystic fibrosis. Eur Respir J. 2014;43:817823. PubMed doi:10.1183/09031936.00055513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gabel L, Ridgers ND, Della Gatta PA, et al. Associations of sedentary time patterns and TV viewing time with inflammatory and endothelial function biomarkers in children. Pediatr Obes. 2016;11:194201. PubMed doi:10.1111/ijpo.12045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mark AE, Janssen I. Influence of bouts of physical activity on overweight in youth. Am J Prev Med. 2009;36:416421. PubMed doi:10.1016/j.amepre.2009.01.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stanojevic S, Wade A, Cole TJ, et al. Spirometry centile charts for young Caucasian children: the Asthma UK Collaborative Initiative. Am J Respir Crit Care Med. 2009;180:547552. PubMed doi:10.1164/rccm.200903-0323OC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Trost SG, Ward DS, Moorehead SM, Watson PD, Riner W, Burke JR. Validity of the computer science and application (CSA) activity monitor in children. Med Sci Sports Exerc. 1998;30:629633. doi:10.1097/00005768-199804000-00023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ridgers ND, Salmon J, Ridley K, O’Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9:15. PubMed doi:10.1186/1479-5868-9-15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11):S523530. doi:10.1249/01.mss.0000185658.28284.ba

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut-points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43:13601368. doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mackintosh KA, Ridley K, Stratton G, Ridgers ND. Energy cost of free-play activities in 10- to 11-year-old children. J Phys Act Health. 2016;13:S71S74. PubMed doi:10.1123/jpah.2015-0709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ryan JM, Forde C, Hussey JM, Gormley J. Comparison of patterns of physical activity and sedentary behavior between children with cerebral palsy and children with typical development. Phys Ther. 2015;95:16091616. PubMed doi:10.2522/ptj.20140337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mattocks C, Ness AR, Leary SD, et al. Use of accelerometers in a large field-based study of children: protocols, design issues, and effects on precision. J Phys Activ Health. 2008;5:S98S111. doi:10.1123/jpah.5.s1.s98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Healy GN, Wijndaele K, Dunstan DW, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31:369371. PubMed doi:10.2337/dc07-1795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jantzen A, Opoku-Pare M, Ruf K, et al. Cystic fibrosis and physical activity: is there a significant difference to healthy individuals? Eur Respir J. 2014;44(suppl 58):P1971.

    • Search Google Scholar
    • Export Citation
  • 33.

    Bradley JM, Moran F. Physical training for cystic fibrosis. Cochrane Database Syst Rev. 2008;(1):CD002768. doi:10.1002/14651858.CD002768.pub2

  • 34.

    Stevens D, Oades PJ, Armstrong N, Williams CA. A survey of exercise testing and training in UK cystic fibrosis clinics. J Cyst Fibros. 2010;9:302306. PubMed doi:10.1016/j.jcf.2010.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Williams CA, Saynor ZL, Tomlinson OW, Barker AR. Cystic fibrosis and physiological responses to exercise. Expert Rev Respir Med. 2014;8:751762. PubMed doi:10.1586/17476348.2014.966693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ruf KC, Fehn S, Bachmann M, et al. Validation of activity questionnaires in patients with cystic fibrosis by accelerometry and cycle ergometry. BMC Med Res Methodol. 2012;12:43. doi:10.1186/1471-2288-12-43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rowlands AV, Eston RG, Ingledew DK. Measurement of physical activity in children with particular reference to the use of heart rate and pedometry. Sports Med. 1997;24:258272. doi:10.2165/00007256-199724040-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:10331041. doi:10.1249/00005768-199507000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Baquet G, Stratton G, Van Praagh E, Berthoin S. Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prev Med. 2007;44:143147. PubMed doi:10.1016/j.ypmed.2006.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Rowland A, Eston RG. The measurement and interpretation of children’s physical activity. J Sport Sci Med. 2007;6:270276.

  • 41.

    Banda JA, Haydel KF, Davila T, et al. Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS ONE. 2016;11:e0150534. PubMed doi:10.1371/journal.pone.0150534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38:5361. PubMed doi:10.1016/j.jcjd.2013.08.266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:9822. doi:10.1186/1479-5868-8-98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Robinson S, Daly RM, Ridgers ND, Salmon J. Screen-based behaviors of children and cardiovascular risk factors. J Pediatr. 2015;167:12391245. PubMed doi:10.1016/j.jpeds.2015.08.067

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Cliff DP, Jones RA, Burrows TL, et al. Volumes and bouts of sedentary behavior and physical activity: associations with cardiometabolic health in obese children. Obesity. 2014;22:E112E118. PubMed doi:10.1002/oby.20698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health. 2011;11:110. doi:10.1186/1471-2458-11-274

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Stone MR, Rowlands AV, Eston RG. Characteristics of the activity pattern in normal weight and overweight boys. Prev Med. 2009;49:205208. PubMed doi:10.1016/j.ypmed.2009.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Evenson KR, Wen F, Hales D, Herring AH. National youth sedentary behavior and physical activity daily patterns using latent class analysis applied to accelerometry. Int J Behav Nutr Phys Act. 2016;13:55. PubMed doi:10.1186/s12966-016-0382-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Fairclough SJ, Boddy LM, Mackintosh KA, Valencia-Peris A, Ramirez-Rico E. Weekday and weekend sedentary time and physical activity in differentially active children. J Sci Med Sport. 2015;18:444449. PubMed doi:10.1016/j.jsams.2014.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Chinapaw MJM, de Niet M, Verloigne M, De Bourdeaudhuij I, Brug J, Altenburg TM. From sedentary time to sedentary patterns: accelerometer data reduction decisions in youth. PLoS ONE. 2014;9:e111205. PubMed doi:10.1371/journal.pone.0111205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 262 231 21
Full Text Views 31 27 3
PDF Downloads 13 12 0