Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Physical inactivity and excess adiposity are thought to be detrimental to physical and cognitive health. However, implications of these interrelated health factors are rarely examined together; consequently, little is known regarding the concomitant contribution of physical activity and adiposity to cognition. Methods: Bivariate correlations and hierarchical linear regressions were conducted among a sample of adults between 25 and 45 years (N = 65). Attentional inhibition was assessed using an Eriksen Flanker task. Whole-body percent body fat (%Fat) was assessed using dual-energy X-ray absorptiometry. Daily percent time spent in moderate to vigorous physical activity (%MVPA) was monitored using an accelerometer (7 d). Results: After adjusting for significant covariates, %MVPA was a positive predictor of accuracy in the incongruent task (β = 0.31, P = .03). Individuals who engaged in greater %MVPA exhibited superior attentional inhibition. Additionally, there was an interaction effect of %Fat and %MVPA on attentional inhibition (β = 0.45, P = .04). Conclusion: The positive influence of MVPA on cognitive control persists following the adjustment of significant covariates and adiposity. Additionally, interactive effects between %Fat and %MVPA suggest that individuals with lower activity and greater adiposity exhibited poorer attentional inhibition. These findings have relevance for public health given the elevated rates of physical inactivity and obesity.

Baumgartner, Walk, Covello, Reeser, and Khan are with the Dept of Kinesiology and Community Health, University of Illinois at Urbana–Champaign, Urbana, IL. Edwards, Chojnacki, Holscher, and Khan are with the Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL. Taylor and Holscher are with the Dept of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, Urbana, IL.

Khan (nakhan2@illinois.edu) is corresponding author.
  • 1.

    Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–257. PubMed doi:10.1016/S0140-6736(12)60646-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ward BW, Clarke TC, Nugent CN, Schiller JS. Early Release of Selected Estimates Based on Data From the 2015 National Health Interview Survey (National Health Interview Survey Early Release Program). Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2016:1–120.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bize R, Johnson JA, Plotnikoff RC. Physical activity level and health-related quality of life in the general adult population: a systematic review. Prev Med. 2007;45(6):401–415. PubMed doi:10.1016/j.ypmed.2007.07.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pate RR, Taverno Ross SE, Liese AD, Dowda M. Associations among physical activity, diet quality, and weight status in US adults. Med Sci Sport Exerc. 2015;47(4):743–750. doi:10.1249/MSS.0000000000000456

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284. PubMed doi:10.1001/jama.2016.6458

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Smith E, Hay P, Campbell L, Trollor JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740–755. PubMed doi:10.1111/j.1467-789X.2011.00920.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71(14):1057–1064. PubMed doi:10.1212/01.wnl.0000306313.89165.ef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Erion JR, Wosiski-Kuhn M, Dey A, et al. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J Neurosci. 2014;34(7):2618–2631. PubMed doi:10.1523/JNEUROSCI.4200-13.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sanz CM, Ruidavets JB, Bongard V, et al. Relationship between markers of insulin resistance, markers of adiposity, HbA1c, and cognitive functions in a middle-aged population-based sample: the MONA LISA study. Diabetes Care. 2013;36(6):1512–1521. PubMed doi:10.2337/dc12-1017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Walther K, Birdsill AC, Glisky EL, Ryan L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum Brain Mapp. 2009;31(7):1052–1064. doi:10.1002/hbm.20916

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bocarsly ME, Fasolino M, Kane GA, et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci U S A. 2015;112(51):15731–15736. PubMed doi:10.1073/pnas.1511593112

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Yau PL, Castro MG, Tagani A, Tsui WH, Convit A. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics. 2012;130(4):856–864. http://pediatrics.aappublications.org/content/130/4/e856.short. Accessed July 17, 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(1):415–445. doi:10.1146/annurev-immunol-031210-101322

  • 14.

    Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21. PubMed doi:10.1016/j.bbi.2014.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427–13431. PubMed doi:10.1073/pnas.96.23.13427

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gomez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci. 2008;28(11):2278–2287. PubMed doi:10.1111/j.1460-9568.2008.06524.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Best J, Miller P. A developmental perspective on executive function. Child Dev. 2010;81(6):1641–1660. PubMed doi:10.1111/j.1467-8624.2010.01499.x

  • 18.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–168. PubMed doi:10.1146/annurev-psych-113011-143750

  • 19.

    Wong CN, Chaddock-Heyman L, Voss MW, et al. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Front Aging Neurosci. 2015;7:154. doi:10.3389/fnagi.2015.00154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr Exerc Sci. 2014;26(2):138–146. PubMed doi:10.1123/pes.2013-0125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hillman CH, Motl RW, Pontifex MB, et al. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol. 2006;25(6):678–687. PubMed doi:10.1037/0278-6133.25.6.678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–130. PubMed doi:10.1111/1467-9280.t01-1-01430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hillman CH, Snook EM, Jerome GJ. Acute cardiovascular exercise and executive control function. Int J Psychophysiol. 2003;48(3):307–314. PubMed doi:10.1016/S0167-8760(03)00080-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hassevoort KM, Khan NA, Hillman CH, Cohen NJ. Childhood markers of health behavior relate to hippocampal health, memory, and academic performance. Mind Brain Educ. 2016;10(3):162–170. doi:10.1111/mbe.12108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Voelcker-Rehage C, Godde B, Staudinger UM. Physical and motor fitness are both related to cognition in old age. Eur J Neurosci. 2010;31(1):167–176. PubMed doi:10.1111/j.1460-9568.2009.07014.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chang YK, Chu CH, Chen FT, Hung TM, Etnier JL. Combined effects of physical activity and obesity on cognitive function: independent, overlapping, moderator, and mediator models. Sports Med. 2017:47(3):449–468.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hoyland A, Lawton CL, Dye L. Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neurosci Biobehav Rev. 2008;32(1):72–85. PubMed doi:10.1016/j.neubiorev.2007.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16(1):143–149. doi:10.3758/BF03203267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kao SC, Drollette ES, Scudder MR, et al. Aerobic fitness is associated with cognitive control strategy in preadolescent children. J Mot Behav. 2017;49(2):150–162. doi:10.1080/00222895.2016.1161594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Khan NA, Baym CL, Monti JM, et al. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children. J Pediatr. 2015;166(2):302–308.e1. PubMed doi:10.1016/j.jpeds.2014.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Troiano RP. Large-scale applications of accelerometers: new frontiers and new questions. Med Sci Sports Exer. 2007;39(9):1501.

  • 32.

    Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. PubMed doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Booth JN, Tomporowski PD, Boyle JM, et al. Associations between executive attention and objectively measured physical activity in adolescence: findings from ALSPAC, a UK cohort. Ment Health Phys Act. 2013;6(3):212–219. doi:10.1016/j.mhpa.2013.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kerr J, Marshall SJ, Patterson RE, et al. Objectively measured physical activity is related to cognitive function in older adults. J Am Geriatr Soc. 2013;61(11):1927–1931. PubMed doi:10.1111/jgs.12524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Erickson KI, Prakash RS, Voss MW, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):1030–1039. PubMed doi:10.1002/hipo.20547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity among adults: United States, 2011–2012. NCHS Data Brief. 2013;131(131):1–8. PubMed

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 221 50
Full Text Views 22 22 4
PDF Downloads 8 8 2