Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: Physical inactivity and excess adiposity are thought to be detrimental to physical and cognitive health. However, implications of these interrelated health factors are rarely examined together; consequently, little is known regarding the concomitant contribution of physical activity and adiposity to cognition. Methods: Bivariate correlations and hierarchical linear regressions were conducted among a sample of adults between 25 and 45 years (N = 65). Attentional inhibition was assessed using an Eriksen Flanker task. Whole-body percent body fat (%Fat) was assessed using dual-energy X-ray absorptiometry. Daily percent time spent in moderate to vigorous physical activity (%MVPA) was monitored using an accelerometer (7 d). Results: After adjusting for significant covariates, %MVPA was a positive predictor of accuracy in the incongruent task (β = 0.31, P = .03). Individuals who engaged in greater %MVPA exhibited superior attentional inhibition. Additionally, there was an interaction effect of %Fat and %MVPA on attentional inhibition (β = 0.45, P = .04). Conclusion: The positive influence of MVPA on cognitive control persists following the adjustment of significant covariates and adiposity. Additionally, interactive effects between %Fat and %MVPA suggest that individuals with lower activity and greater adiposity exhibited poorer attentional inhibition. These findings have relevance for public health given the elevated rates of physical inactivity and obesity.

Baumgartner, Walk, Covello, Reeser, and Khan are with the Dept of Kinesiology and Community Health, University of Illinois at Urbana–Champaign, Urbana, IL. Edwards, Chojnacki, Holscher, and Khan are with the Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL. Taylor and Holscher are with the Dept of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, Urbana, IL.

Khan (nakhan2@illinois.edu) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Hallal PCAndersen LBBull FCet al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247257. PubMed doi:10.1016/S0140-6736(12)60646-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ward BWClarke TCNugent CNSchiller JS. Early Release of Selected Estimates Based on Data From the 2015 National Health Interview Survey (National Health Interview Survey Early Release Program). Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2016:1120.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bize RJohnson JAPlotnikoff RC. Physical activity level and health-related quality of life in the general adult population: a systematic review. Prev Med. 2007;45(6):401415. PubMed doi:10.1016/j.ypmed.2007.07.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pate RRTaverno Ross SELiese ADDowda M. Associations among physical activity, diet quality, and weight status in US adults. Med Sci Sport Exerc. 2015;47(4):743750. doi:10.1249/MSS.0000000000000456

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Flegal KMKruszon-Moran DCarroll MDFryar CDOgden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284. PubMed doi:10.1001/jama.2016.6458

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Smith EHay PCampbell LTrollor JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740755. PubMed doi:10.1111/j.1467-789X.2011.00920.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Whitmer RAGustafson DRBarrett-Connor EHaan MNGunderson EPYaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71(14):10571064. PubMed doi:10.1212/01.wnl.0000306313.89165.ef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Erion JRWosiski-Kuhn MDey Aet al. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J Neurosci. 2014;34(7):26182631. PubMed doi:10.1523/JNEUROSCI.4200-13.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sanz CMRuidavets JBBongard Vet al. Relationship between markers of insulin resistance, markers of adiposity, HbA1c, and cognitive functions in a middle-aged population-based sample: the MONA LISA study. Diabetes Care. 2013;36(6):15121521. PubMed doi:10.2337/dc12-1017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Walther KBirdsill ACGlisky ELRyan L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum Brain Mapp. 2009;31(7):10521064. doi:10.1002/hbm.20916

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bocarsly MEFasolino MKane GAet al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci U S A. 2015;112(51):1573115736. PubMed doi:10.1073/pnas.1511593112

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Yau PLCastro MGTagani ATsui WHConvit A. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics. 2012;130(4):856864. http://pediatrics.aappublications.org/content/130/4/e856.short. Accessed July 17 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Gregor MFHotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(1):415445. doi:10.1146/annurev-immunol-031210-101322

  • 14.

    Miller AASpencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:1021. PubMed doi:10.1016/j.bbi.2014.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    van Praag HChristie BRSejnowski TJGage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):1342713431. PubMed doi:10.1073/pnas.96.23.13427

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gomez-Pinilla FVaynman SYing Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci. 2008;28(11):22782287. PubMed doi:10.1111/j.1460-9568.2008.06524.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Best JMiller P. A developmental perspective on executive function. Child Dev. 2010;81(6):16411660. PubMed doi:10.1111/j.1467-8624.2010.01499.x

  • 18.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135168. PubMed doi:10.1146/annurev-psych-113011-143750

  • 19.

    Wong CNChaddock-Heyman LVoss MWet al. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Front Aging Neurosci. 2015;7:154. doi:10.3389/fnagi.2015.00154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Khan NAHillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr Exerc Sci. 2014;26(2):138146. PubMed doi:10.1123/pes.2013-0125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hillman CHMotl RWPontifex MBet al. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol. 2006;25(6):678687. PubMed doi:10.1037/0278-6133.25.6.678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Colcombe SKramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125130. PubMed doi:10.1111/1467-9280.t01-1-01430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hillman CHSnook EMJerome GJ. Acute cardiovascular exercise and executive control function. Int J Psychophysiol. 2003;48(3):307314. PubMed doi:10.1016/S0167-8760(03)00080-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hassevoort KMKhan NAHillman CHCohen NJ. Childhood markers of health behavior relate to hippocampal health, memory, and academic performance. Mind Brain Educ. 2016;10(3):162170. doi:10.1111/mbe.12108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Voelcker-Rehage CGodde BStaudinger UM. Physical and motor fitness are both related to cognition in old age. Eur J Neurosci. 2010;31(1):167176. PubMed doi:10.1111/j.1460-9568.2009.07014.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chang YKChu CHChen FTHung TMEtnier JL. Combined effects of physical activity and obesity on cognitive function: independent, overlapping, moderator, and mediator models. Sports Med. 2017:47(3):449468.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hoyland ALawton CLDye L. Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neurosci Biobehav Rev. 2008;32(1):7285. PubMed doi:10.1016/j.neubiorev.2007.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Eriksen BAEriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16(1):143149. doi:10.3758/BF03203267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kao SCDrollette ESScudder MRet al. Aerobic fitness is associated with cognitive control strategy in preadolescent children. J Mot Behav. 2017;49(2):150162. doi:10.1080/00222895.2016.1161594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Khan NABaym CLMonti JMet al. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children. J Pediatr. 2015;166(2):302308.e1. PubMed doi:10.1016/j.jpeds.2014.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Troiano RP. Large-scale applications of accelerometers: new frontiers and new questions. Med Sci Sports Exer. 2007;39(9):1501.

  • 32.

    Freedson PSMelanson ESirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777781.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Faul FErdfelder ELang AGBuchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Booth JNTomporowski PDBoyle JMet al. Associations between executive attention and objectively measured physical activity in adolescence: findings from ALSPAC, a UK cohort. Ment Health Phys Act. 2013;6(3):212219. doi:10.1016/j.mhpa.2013.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kerr JMarshall SJPatterson REet al. Objectively measured physical activity is related to cognitive function in older adults. J Am Geriatr Soc. 2013;61(11):19271931. PubMed doi:10.1111/jgs.12524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Erickson KIPrakash RSVoss MWet al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):10301039. PubMed doi:10.1002/hipo.20547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ogden CLCarroll MDKit BKFlegal KM. Prevalence of obesity among adults: United States, 2011–2012. NCHS Data Brief. 2013;131(131):18. PubMed

    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 85 85 19
Full Text Views 0 0 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar
Cited By