Substituting Sedentary Time With Light and Moderate to Vigorous Physical Activity is Associated With Better Cardiometabolic Health

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: The purpose of the current study was to apply a more novel approach to systematically examine (1) associations of clustered cardiometabolic risk and cardiometabolic risk factors and (2) theoretical substitution of sedentary time with either sleep, light physical activity (LPA), or moderate to vigorous physical activity (MVPA) and substituting LPA with MVPA. Methods: Physical activity and sleep were objectively measured in 410 Flemish adults [55.5 (9.6) y, 64% men] with a SenseWear Pro 3 Armband. Cardiometabolic risk factors (obesity, hyperglycemia, dyslipidemia, and hypertension) and cardiorespiratory fitness were objectively measured. Isotemporal substitution analyses were performed to assess the associations between substituting time from a potentially negative behavior into another potentially positive behavior. Results: Theoretical substitution of sedentary time with MVPA was associated with decreased clustered cardiometabolic risk, b = −0.06 (−0.08 to −0.04), and substituting LPA with MVPA was associated with a decrease in clustered cardiometabolic risk, b = −0.08 (−0.11 to −0.04). Substituting sedentary time with LPA or sleep improved high-density lipoprotein-cholesterol, systolic and diastolic blood pressures, and waist circumference. Conclusion: Theoretical replacement of sedentary time with either sleep, LPA, or MVPA was positively associated with improved cardiometabolic risk factor status. Interventions for increasing cardiometabolic health can focus on replacing sedentary time with either sleep, LPA, or MVPA depending on the risk parameters that need to be targeted.

Knaeps, De Baere, Mertens, Charlier, and Lefevre are with the Dept of Kinesiology, KU Leuven, Leuven, Belgium. Bourgois is with the Dept of Movement and Sports Sciences, Ghent University, Ghent, Belgium. Mertens is also with the Dept of Human Biometrics and Biomechanics, Vrije Universiteit Brussel, Brussels, Belgium.

Knaeps (sara.knaeps@gmail.com) is the corresponding author.
  • 1.

    World Health Organization. Global Health Risks—Mortality and Burden of Disease Attributable to Selected Major Risks. Geneva, Switzerland: World Health Organization; 2009.

    • Search Google Scholar
    • Export Citation
  • 2.

    Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–215. PubMed doi:10.1016/j.amepre.2011.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Stewart RA, Benatar J, Maddison R. Living longer by sitting less and moving more. Curr Opin Cardiol. 2015;30(5):551–557. PubMed doi:10.1097/HCO.0000000000000207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–1434. PubMed doi:10.1249/mss.0b013e3180616b27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Healy GN, Dunstan DW, Salmon J, et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–666. PubMed doi:10.2337/dc07-2046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ju SY, Choi WS. Sleep duration and metabolic syndrome in adult populations: a meta-analysis of observational studies. Nutr Diabetes. 2013;3:65. PubMed doi:10.1038/nutd.2013.8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519–527. PubMed doi:10.1093/aje/kwp163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Buman MP, Winkler EA, Kurka JM, et al. Reallocating time to sleep, sedentary behaviors, or active behaviors: associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. Am J Epidemiol. 2014;179(3):323–334. PubMed doi:10.1093/aje/kwt292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hamer M, Stamatakis E, Steptoe A. Effects of substituting sedentary time with physical activity on metabolic risk. Med Sci Sports Exerc. 2014;46(10):1946–1950. PubMed doi:10.1249/MSS.0000000000000317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ekblom-Bak E, Ekblom O, Bergstrom G, Borjesson M. Isotemporal substitution of sedentary time by physical activity of different intensities and bout lengths, and its associations with metabolic risk. Eur J Prev Cardiol. 2015;23(9):967–974. PubMed doi:10.1177/2047487315619734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wellburn S, Ryan CG, Azevedo LB, et al. Displacing sedentary time: association with cardiovascular disease prevalence. Med Sci Sports Exerc. 2016;48(4):641–647. PubMed doi:10.1249/MSS.0000000000000816

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ekblom-Bak E, Ekblom O, Bolam K, Ekblom B, Bergstrom G, Borjesson M. SCAPIS pilot study: sitness, fitness and fatness—is sedentary time substitution by physical activity equally important for everyone’s markers of glucose regulation? J Phys Act Health. 2016;13(7):697–703. PubMed doi:10.1123/jpah.2015-0611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stamatakis E, Rogers K, Ding D, et al. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: a prospective study of 201,129 mid-aged and older adults. Int J Behav Nutr Phys Act. 2015;12:121. PubMed doi:10.1186/s12966-015-0280-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Matton L, Beunen G, Duvigneaud N, et al. Methodological issues associated with longitudinal research: findings from the Leuven Longitudinal Study on Lifestyle, Fitness and Health (1969–2004). J Sports Sci. 2007;25(9):1011–1024. doi:10.1080/02640410600951563

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ. Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc. 2010;42(11):2134–2140. PubMed doi:10.1249/MSS.0b013e3181e0b3ff

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bhammar DM, Sawyer BJ, Tucker WJ, Lee JM, Gaesser GA. Validity of SenseWear® Armband v5.2 and v2.2 for estimating energy expenditure. J Sports Sci. 2016;34(19):1830–1838. PubMed doi:10.1080/02640414.2016.1140220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Shin M, Swan P, Chow CM. The validity of Actiwatch2 and SenseWear Armband compared against polysomnography at different ambient temperature conditions. Sleep Sci. 2015;8(1):9–15. PubMed doi:10.1016/j.slsci.2015.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    De Baere S, Lefevre J, De Martelaer K, Philippaerts R, Seghers J. Temporal patterns of physical activity and sedentary behavior in 10–14 year-old children on weekdays. BMC Public Health. 2015;15:791. PubMed doi:10.1186/s12889-015-2093-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Orme M, Wijndaele K, Sharp SJ, Westgate K, Ekelund U, Brage S. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. Int J Behav Nutr Phys Act. 2014;11(1):34. PubMed doi:10.1186/1479-5868-11-34

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Scheers T, Philippaerts R, Lefevre J. Variability in physical activity patterns as measured by the SenseWear Armband: how many days are needed? Eur J Appl Physiol. 2012;112(5):1653–1662. PubMed doi:10.1007/s00421-011-2131-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wijndaele K, Orrow G, Ekelund U, et al. Increasing objectively measured sedentary time increases clustered cardiometabolic risk: a 6 year analysis of the ProActive study. Diabetologia. 2014;57(2):305–312. PubMed doi:10.1007/s00125-013-3102-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    World Health Organization. MONICA Project Manual. Geneva, Switzerland: Cardiovascular Diseases Unit, World Health Organization; 1990.

  • 23.

    Guenther PM, Casavale KO, Reedy J, et al. Update of the Healthy Eating Index: HEI-2010. J Acad Nutr Diet. 2013;113(4):569–580. doi:10.1016/j.jand.2012.12.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Duvigneaud N, Matton L, Wijndaele K, et al. Relationship of obesity with physical activity, aerobic fitness and muscle strength in Flemish adults. J Sports Med Phys Fitness. 2008;48(2):201–210. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wientzek A, Floegel A, Knuppel S, et al. Serum metabolites related to cardiorespiratory fitness, physical activity energy expenditure, sedentary time and vigorous activity. Int J Sport Nutr Exerc Metab. 2014;24(2):215–226. PubMed doi:10.1123/ijsnem.2013-0048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Prasai MJ, George JT, Scott EM. Molecular clocks, type 2 diabetes and cardiovascular disease. Diab Vasc Dis Res. 2008;5(2):89–95. doi:10.3132/dvdr.2008.015

  • 27.

    Bouchard C. Physical activity and health: introduction to the dose-response symposium. Med Sci Sports Exerc. 2001;33(suppl 6):S347–350. doi:10.1097/00005768-200106001-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J Sci Med Sport. 2015;18(3):294–298. PubMed doi:10.1016/j.jsams.2014.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Scheers T, Philippaerts R, Lefevre J. SenseWear-determined physical activity and sedentary behavior and metabolic syndrome. Med Sci Sports Exerc. 2013;45(3):481–489. PubMed doi:10.1249/MSS.0b013e31827563ba

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Vanhees L, Lefevre J, Philippaerts R, et al. How to assess physical activity? How to assess physical fitness? Eur J Cardiovasc Prev Rehabil. 2005;12(2):102–114. PubMed doi:10.1097/00149831-200504000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 69 69 9
Full Text Views 7 7 2
PDF Downloads 2 2 1