Multiple Short Bouts of Walking Activity Attenuate Glucose Response in Obese Women

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: We sought to determine the effect of multiple walking breaks from sedentary behavior (SED) on glucose responses in sedentary obese women. Materials and Methods: Ten women [aged = 36 (5) y, body mass index = 38.0 (1.6) kg/m2, body fat = 49.6 (1.4)%] completed 3 conditions (48-h “washout” in-between conditions) following a standardized meal in random order: 4-hour SED, 4-hour SED with 2 minutes of moderate-intensity walking every 30 minutes (SED + 2 min), and 4-hour SED with 5 minutes of moderate-intensity walking every 30 minutes (SED + 5 min). Measurements included continuous interstitial glucose concentration monitoring immediately before and during standardized conditions and accelerometry for physical activity patterns during and in-between the standardized conditions. Repeated-measures 1-way analyses of variance (α = .05) with Bonferroni correction for post hoc comparisons were performed. Effect sizes (d [95% confidence interval]) were calculated as mean difference from SED/pooled standard deviation. Results: Sedentary time was similar in the 48 hours preceding each condition (P > .05). By design, sedentary time was different between conditions (P < .001). Compared with SED, 2-hour postprandial glucose positive incremental area under the curve was lower for SED + 5 minutes (P = .005; d = − 0.57 [−1.48, 0.40]), but not for SED + 2 minutes (P = .086; d = − 0.71 [−1.63, 0.27]). Four-hour postprandial glucose area under the curve was similar between conditions (P > .05). Conclusion: In sedentary obese women, 5 minutes of moderate-intensity walking breaks from SED each 30 minutes attenuate 2-hour postprandial glucose excursions.

Rodriguez-Hernandez, Pascoe, Roberts, and Wadsworth are with the School of Kinesiology, Auburn University, Auburn, AL. Martin is with the Dept of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL.

Rodriguez-Hernandez (mynor.rodriguez@ucr.ac.cr) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Dempsey PCOwen NBiddle SJHDunstan DW. Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease. Curr Diab Rep. 2014;14(9):522. PubMed doi:10.1007/s11892-014-0522-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hamer MStamatakis ESteptoe A. Effects of substituting sedentary time with physical activity on metabolic risk. Med Sci Sports Exerc. 2014;46(10):19461950. PubMed doi:10.1249/MSS.0000000000000317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Troiano RPBerrigan DDodd KWMâsse LCTilert TMcDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181188. PubMed doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Centers for Disease Control and Prevention. Early Release of Selected Estimates Based on Data. From the 2015 National Health Interview Survey. Atlanta, GA: Centers for Disease Control and Prevention; 2015:4454.

    • Search Google Scholar
    • Export Citation
  • 5.

    Altenburg TMRotteveel JDunstan DWSalmon JChinapaw MJM. The effect of interrupting prolonged sitting time with short, hourly, moderate-intensity cycling bouts on cardiometabolic risk factors in healthy, young adults. J Appl Physiol. 2013;115(12):17511756. PubMed doi:10.1152/japplphysiol.00662.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dunstan DWHoward BHealy GNOwen N. Too much sitting—a health hazard. Diabetes Res Clin Pract. 2012;97(3):368376. PubMed doi:10.1016/j.diabres.2012.05.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dunstan DWKingwell BALarsen Ret al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976983. PubMed doi:10.2337/dc11-1931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Owen NHealy GNMatthews CEDunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105113. PubMed doi:10.1097/JES.0b013e3181e373a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Owen N. Sedentary behavior: understanding and influencing adults’ prolonged sitting time. Prev Med. 2012;55(6):535539. PubMed doi:10.1016/j.ypmed.2012.08.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Biswas AOh PIFaulkner GEet al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123132. PubMed doi:10.7326/M14-1651

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wilmot EGEdwardson CLAchana FAet al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):28952905. PubMed doi:10.1007/s00125-012-2677-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Healy GNWijndaele KDunstan DWet al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31(2):369371. PubMed doi:10.2337/dc07-1795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ekelund UWard HANorat Tet al. Physical activity and all-cause mortality across levels of overall and abdominal adiposity in European men and women: the European Prospective Investigation into Cancer and Nutrition Study (EPIC). Am J Clin Nutr. 2015;101(3):613621. PubMed doi:10.3945/ajcn.114.100065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Peddie MCBone JLRehrer NJSkeaff CMGray ARPerry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98(2):358366. PubMed doi:10.3945/ajcn.112.051763

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hamilton MTHamilton DGZderic TW. Sedentary behavior as a mediator of type 2 diabetes. Med Sport Sci. 2014;60:1126. PubMed doi:10.1159/000357332

  • 16.

    Healy GNDunstan DWSalmon Jet al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661666. PubMed doi:10.2337/dc07-2046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thorp AAKingwell BASethi PHammond LOwen NDunstan DW. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc. 2014;46(11):20532061. PubMed doi:10.1249/MSS.0000000000000337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Holmstrup MFairchild TKeslacy SWeinstock RKanaley J. Multiple short bouts of exercise over 12-h period reduce glucose excursions more than an energy-matched single bout of exercise. Metabolism. 2014;63(4):510519. PubMed doi:10.1016/j.metabol.2013.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Owen NLeslie ESalmon JFotheringham MJ. Environmental determinants of physical activity and sedentary behavior. Exerc Sport Sci Rev. 2000;28(4):153158. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hamilton MTHealy GNDunstan DWZderic TWOwen N. Too little exercise and too much sitting: inactivity physiology and the need for new recommendations on sedentary behavior. Curr Cardiovasc Risk Rep. 2008;2(4):292298. PubMed doi:10.1007/s12170-008-0054-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ogden CLCarroll MDFryar CDFlegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief. 2015;(219):18. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sturm R. The effects of obesity, smoking, and drinking on medical problems and costs. Health Aff. 2002;21(2):245253. PubMed doi:10.1377/hlthaff.21.2.245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Philadelphia, PA: Wolters Kluwer; 2018.

    • Search Google Scholar
    • Export Citation
  • 24.

    U.S. Department of Health and Human Services (HHS) and U.S. Department of Agriculture (USDA). 2015–2020 Dietary Guidelines for Americans. 8th ed. 2015. http://health.gov/dietaryguidelines/2015/guidelines/. Accessed March 5 2017.

    • Search Google Scholar
    • Export Citation
  • 25.

    Terada TLoehr SGuigard Eet al. Test–retest reliability of a continuous glucose monitoring system in individuals with type 2 diabetes. Diabetes Technol Ther. 2014;16(8):491498. PubMed doi:10.1089/dia.2013.0355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chan CLPyle LNewnes LNadeau KJZeitler PSKelsey MM. Continuous glucose monitoring and its relationship to hemoglobin A1c and oral glucose tolerance testing in obese and prediabetic youth. J Clin Endocrinol Metab. 2015;100(3):902910. PubMed doi:10.1210/jc.2014-3612

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Brunner RKitzberger RMiehsler WHerkner HMadl CHolzinger U. Accuracy and reliability of a subcutaneous continuous glucose-monitoring system in critically ill patients. Crit Care Med. 2011;39(4):659664. PubMed doi:10.1097/CCM.0b013e318206bf2e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bedini JLWallace JFPetruschke TPardo S. A multicenter performance evaluation of a blood glucose monitoring system in 21 leading hospitals in Spain. J Diabetes Sci Technol. 2015;10(1):93100. PubMed doi:10.1177/1932296815598777

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Grunberger GBailey TSCohen AJet al. Statement by the American Association of Clinical Endocrinologists Consensus Panel on insulin pump management. Endocr Pract. 2010;16(5):746762. PubMed doi:10.4158/EP.16.5.746

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Grunberger GAbelseth JMBailey TSet al. Consensus statement by the American Association of Clinical Endocrinologists/American College of Endocrinology insulin pump management task force. Endocr Pract. 2014;20(5):463489. PubMed doi:10.4158/EP14145.PS

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Toombs RJDucher GShepherd JADe Souza MJ. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity. 2012;20(1):3039. PubMed doi:10.1038/oby.2011.211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kephart WCWachs TDMac Thompson Ret al. Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists. Amino Acids. 2016;48(3):779789. PubMed doi:10.1007/s00726-015-2125-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cain KLGeremia CM. Accelerometer Data Collection and Scoring Manual For Adult & Senior Studies. San Diego, CA: San Diego State University; 2012.

    • Search Google Scholar
    • Export Citation
  • 34.

    Ward DSEvenson KRVaughn ARodgers ABTroiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37(suppl 11):582588. PubMed doi:10.1249/01.mss.0000185292.71933.91

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hart TLSwartz AMCashin SEStrath SJ. How many days of monitoring predict physical activity and sedentary behaviour in older adults? Int J Behav Nutr Phys Act. 2011;8(1):62. PubMed doi:10.1186/1479-5868-8-62

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Matthews CEChen KYFreedson PSet al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875881. PubMed doi:10.1093/

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Trost SGMcIver KLPate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(suppl 11):S531S543. PubMed doi:10.1249/01.mss.0000185657.86065.98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tudor-Locke CJohnson WDKatzmarzyk PT. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 2009;41(7):13841391. PubMed doi:10.1249/MSS.0b013e318199885c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed doi:10.1037/0033-2909.112.1.155

  • 40.

    Oberlin DJMikus CRKearney MLet al. One bout of exercise alters free-living postprandial glycemia in type 2 diabetes. Med Sci Sports Exerc. 2014;46(2):232238. PubMed doi:10.1249/MSS.0b013e3182a54d85

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Russell RR 3rdLi JCoven DLet al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004;114(4):495503. PubMed doi:10.1172/JCI19297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Fryer LGDFoufelle FBarnes KBaldwin SAWoods ACarling D. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Biochem J. 2002;363(1):167174. PubMed doi:10.1042/bj3630167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Bergouignan ALatouche CHeywood Set al. Frequent interruptions of sedentary time modulates contraction- and insulin-stimulated glucose uptake pathways in muscle: ancillary analysis from randomized clinical trials. Sci Rep. 2016;6(1):32044. PubMed doi:10.1038/srep32044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Stewart STCutler DMRosen AB. Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med. 2009;361(23):22522260. PubMed doi:10.1056/NEJMsa0900459

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 31 31 5
Full Text Views 1 1 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar
Cited By