Self-Reported Functional Mobility, Balance Confidence, and Prosthetic Use Are Associated With Daily Step Counts Among Individuals With a Unilateral Transtibial Amputation

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Adults postamputation are not meeting physical activity recommendations. Physical activity is an important consideration in prosthetic prescription. The objective of this study was to determine if functional mobility, balance confidence, and prosthetic use are associated with physical activity among adults with a lower-limb amputation. Methods: This study recruited patients aged 18–85 years with unilateral transtibial amputations. The Cumulative Illness Rating Scale was used to determine comorbidity burden. Participants completed the Prosthetic Evaluation Questionnaire-Mobility Section, Activities-specific Balance Confidence Scale, and Houghton Scale of Prosthetic Use and wore a StepWatch monitor for 7 days to obtain daily step counts. Linear regression was used to evaluate relationships between each self-report measure and step counts after controlling for covariates, that is, sex, age, time since initial amputation, and comorbidity burden. Results: Forty-seven participants had ≥5 days of step data and were included in this analysis. The Prosthetic Evaluation Questionnaire-Mobility Section [mean (SD): 35.0 (9.6) points] and Activities-specific Balance Confidence Scale [79.2% (15.9%)] each explained 13% of the variance in step count [5491 (4043) steps], whereas the Houghton Scale of Prosthetic Use [10.3 (1.2) points] explained 10% of the variance. Conclusion: Self-reported functional mobility, balance confidence, and prosthetic use predict short-term average daily step counts as determined from research-grade accelerometers.

Sions is with the Dept of Physical Therapy and the Biomechanics and Movement Science Program, University of Delaware, Newark, DE. Arch is with the Depts of Kinesiology & Applied Physiology and Biomedical Engineering and the Biomechanics and Movement Science Program, University of Delaware, Newark, DE. Horne is with the Independence Prosthetics-Orthotics, Inc, Newark, DE.

Sions (megsions@udel.edu) is corresponding author.
  • 1.

    Swaminathan A, Vemulapalli S, Patel MR, Jones WS. Lower extremity amputation in peripheral artery disease: improving patient outcomes. Vasc Health Risk Manag. 2014;10:417424. PubMed doi:10.2147/VHRM.S50588

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Klute GK, Berge JS, Orendurff MS, Williams RM, Czerniecki JM. Prosthetic intervention effects on activity of lower-extremity amputees. Arch Phys Med Rehabil. 2006;87:717722. PubMed doi:10.1016/j.apmr.2006.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Halsne EG, Waddingham MG, Hafner BJ. Long-term activity in and among persons with transfemoral amputation. J Rehabil Res Dev. 2013;50:515530. PubMed doi:10.1682/JRRD.2012.04.0066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Schuch F, Vancampfort D, Firth J, et al. Physical activity and sedentary behavior in people with major depressive disorder: a systematic review and meta-analysis. J Affect Disord. 2017;210:139150. doi:10.1016/j.jad.2016.10.050

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Shuval K, Leonard T, Drope J, et al. Physical activity counseling in primary care: insights from public health and behavioral economics. CA Cancer J Clin. 2017;67:233244. PubMed doi:10.3322/caac.21394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Luzak A, Heier M, Thorand B, et al. Physical activity levels, duration pattern and adherence to WHO recommendations in German adults. PLoS ONE. 2017;12:0172503. doi:10.1371/journal.pone.0172503

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bellettiere J, Carlson JA, Rosenberg D, et al. Gender and age differences in hourly and daily patterns of sedentary time in older adults living in retirement communities. PLoS ONE. 2015;10:e0136161. doi:10.1371/journal.pone.0136161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wong CK, Chen CC, Benoy SA, Rahal RT, Blackwell WM. Role of balance ability and confidence in prosthetic use for mobility of people with lower-limb loss. J Rehabil Res Dev. 2014;51:13531364. doi:10.1682/JRRD.2013.11.0235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Yasar E, Tok F, Kesikburun S, et al. Epidemiologic data of trauma-related lower limb amputees: a single center 10-year experience. Injury. 2017;48:349352. PubMed doi:10.1016/j.injury.2016.12.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bhutani S, Bhutani J, Chhabra A, Uppal R. Living with amputation: anxiety and depression correlates. J Clin Diagn Res. 2016;10:RC09RC12. PubMed doi:10.7860/JCDR/2016/20316.8417

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ubayawansa DH, Abeysekera WY, Kumara MM. Major lower limb amputations: experience of a tertiary care hospital in Sri Lanka. J Coll Physicians Surg Pak. 2016;26:620622. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Davenport DL, Ritchie JD, Xenos ES. Incidence and risk factors for 30-day postdischarge mortality in patients with vascular disease undergoing major lower extremity amputation. Ann Vasc Surg. 2012;26:219224. PubMed doi:10.1016/j.avsg.2011.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kahle JT, Highsmith MJ, Schaepper H, Johannesson A, Orendurff MS, Kaufman K. Predicting walking ability following lower limb amputation: an updated systematic literature review. Technol Innov. 2016;18:125137. doi:10.21300/18.2-3.2016.125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kurichi JE, Kwong P, Vogel WB, Xie D, Cowper Ripley D, Bates BE. Effects of prosthetic limb prescription on 3-year mortality among Veterans with lower-limb amputation. J Rehabil Res Dev. 2015;52:385396. PubMed doi:10.1682/JRRD.2014.09.0209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hsu MJ, Nielsen DH, Lin-Chan SJ, Shurr D. The effects of prosthetic foot design on physiologic measurements, self-selected walking velocity, and physical activity in people with transtibial amputation. Arch Phys Med Rehabil. 2006;87:123129. PubMed doi:10.1016/j.apmr.2005.07.310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Klute GK, Kallfelz CF, Czerniecki JM. Mechanical properties of prosthetic limbs: adapting to the patient. J Rehabil Res Dev. 2001;38:299307. PubMed

  • 17.

    Kahle JT, Highsmith MJ, Hubbard SL. Comparison of nonmicroprocessor knee mechanism versus C-leg on prosthesis evaluation questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev. 2008;45:114. PubMed doi:10.1682/JRRD.2007.04.0054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Parker K, Kirby RL, Adderson J, Thompson K. Ambulation of people with lower-limb amputations: relationship between capacity and performance measures. Arch Phys Med Rehabil. 2010;91:543549. PubMed doi:10.1016/j.apmr.2009.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    van der Linde H, Hofstad CJ, Geurts AC, Postema K, Geertzen JH, van Limbeek J. A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis. J Rehabil Res Dev. 2004;41:555570. PubMed doi:10.1682/JRRD.2003.06.0102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. PubMed doi:10.1186/1479-5868-5-56

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Thyregod M, Bodtger U. Coherence between self-reported and objectively measured physical activity in patients with chronic obstructive lung disease: a systematic review. Int J Chron Obstruct Pulmon Dis. 2016;11:29312938. doi:10.2147/COPD.S116422

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Silsbury Z, Goldsmith R, Rushton A. Systematic review of the measurement properties of self-report physical activity questionnaires in healthy adult populations. BMJ Open. 2015;5:e008430. PubMed doi:10.1136/bmjopen-2015-008430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Forsen L, Loland NW, Vuillemin A, et al. Self-administered physical activity questionnaires for the elderly: a systematic review of measurement properties. Sports Med. 2010;40:601623. PubMed doi:10.2165/11531350-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Svege I, Kolle E, Risberg MA. Reliability and validity of the Physical Activity Scale for the Elderly (PASE) in patients with hip osteoarthritis. BMC Musculoskelet Disord. 2012;13:26. PubMed doi:10.1186/1471-2474-13-26

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    O’Neill B, McDonough SM, Wilson JJ, et al. Comparing accelerometer, pedometer and a questionnaire for measuring physical activity in bronchiectasis: a validity and feasibility study? Respir Res. 2017;18:16. doi:10.1186/s12931-016-0497-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lipert A, Jegier A. Comparison of different physical activity measurement methods in adults aged 45 to 64 years under free-living conditions. Clin J Sport Med. 2017;27:400408. doi:10.1097/JSM.0000000000000362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Stepien JM, Cavenett S, Taylor L, Crotty M. Activity levels among lower-limb amputees: self-report versus step activity monitor. Arch Phys Med Rehabil. 2007;88:896900. PubMed doi:10.1016/j.apmr.2007.03.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Coleman KL, Smith DG, Boone DA, Joseph AW, del Aquila MA. Step activity monitor: long-term, continuous recording of ambulatory function. J Rehabil Res Dev. 1999;36:818. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bussmann JB, Culhane KM, Horemans HL, Lyons GM, Starn HJ. Validity of the prosthetic activity monitor to assess the duration and spatio-temporal characteristics of prosthetic walking. IEEE Trans Neural Syst Rehabil Eng. 2004;12:379386. doi:10.1109/TNSRE.2004.840495

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ramstrand N, Nilsson KA. Validation of a patient activity monitor to quantify ambulatory activity in an amputee population. Prosthet Orthot Int. 2007;31:157166. doi:10.1080/03093640600988617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    McCullagh R, Dillon C, O’Connell AM, Horgan NF, Timmons S. Step-count accuracy of 3 motion sensors for older and frail medical inpatients. Arch Phys Med Rehabil. 2017;98:295302. PubMed doi:10.1016/j.apmr.2016.08.476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Mandel A, Paul K, Paner R, Devlin M, Dilkas S, Pauley T. Balance confidence and activity of community-dwelling patients with transtibial amputation. J Rehabil Res Dev. 2016;53:551560. doi:10.1682/JRRD.2015.03.0044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Berge JS, Czerniecki JM, Klute GK. Efficacy of shock-absorbing versus rigid pylons for impact reduction in transtibial amputees based on laboratory, field, and outcome metrics. J Rehabil Res Dev. 2005;42:795808. PubMed doi:10.1682/JRRD.2005.02.0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16:622626. PubMed doi:10.1111/j.1532-5415.1968.tb02103.x

  • 35.

    Hudon C, Fortin M, Vanasse A. Cumulative Illness Rating Scale was a reliable and valid index in a family practice context. J Clin Epidemiol. 2005;58:603608. PubMed doi:10.1016/j.jclinepi.2004.10.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Franchignoni F, Giordano A, Ferriero G, Orlandini D, Amoresano A, Perucca L. Measuring mobility in people with lower limb amputation: Rasch analysis of the mobility section of the prosthesis evaluation questionnaire. J Rehabil Med. 2007;39:138144. PubMed doi:10.2340/16501977-0033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Resnik L, Borgia M. Reliability of outcome measures for people with lower-limb amputations: distinguishing true change from statistical error. Phys Ther. 2011;91:555565. doi:10.2522/ptj.20100287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Miller WC, Deathe AB, Speechley M. Psychometric properties of the activities-specific balance confidence scale among individuals with a lower-limb amputation. Arch Phys Med Rehabil. 2003;84:656661. PubMed doi:10.1016/S0003-9993(02)04807-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J Gerontol A Bio Sci Med Sci. 1995;50A:M2834. doi:10.1093/gerona/50A.1.M28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Devlin M, Pauley T, Head K, Garfinkel S. Houghton Scale of Prosthetic Use in people with lower-extremity amputations: reliability, validity, and responsiveness to change. Arch Phys Med Rehabil. 2004;85:13391344. PubMed doi:10.1016/j.apmr.2003.09.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Houghton AD, Taylor PR, Thurlow S, Rootes E, McColl I. Success rates for rehabilitation of vascular amputees: implications for preoperative assessment and amputation level. Br J Surg. 1992;79:753755. PubMed doi:10.1002/bjs.1800790811

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Wong CK, Gibbs W, Chen ES. Use of the Houghton scale to classify community and household walking ability in people with lower-limb amputation: criterion-related validity. Arch Phys Med Rehabil. 2016;97:11301136. PubMed doi:10.1016/j.apmr.2016.01.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Feito Y, Bassett DR, Thompson DL, Typ BM. Effects of body mass index on step count accuracy of physical activity monitors. J Phys Act Health. 2012;9:594600. doi:10.1123/jpah.9.4.594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tudor-Locke C, Craig CL, Brown WJ, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79. PubMed doi:10.1186/1479-5868-8-79

  • 45.

    Tudor-Locke C, Craig CL, Aoyagi Y, et al. How many steps/day are enough? For older adults and special populations. Int J Behav Nutr Phys Act. 2011;8:80. PubMed doi:10.1186/1479-5868-8-80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Lin SJ, Winston KD, Mitchell J, Girlinghouse J, Crochet K. Physical activity, functional capacity, and step variability during walking in people with lower-limb amputation. Gait Posture. 2014;40:140144. doi:10.1016/j.gaitpost.2014.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Kim JC, Shapiro BB, Zhang M, et al. Daily physical activity and physical function in adult maintenance hemodialysis patients. J Cachexia Sarcopenia Muscle. 2014;5:209220. PubMed doi:10.1007/s13539-014-0131-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Miller CA, Williams JE, Durham KL, Horn SC, Smith JL. The effect of a supervised community-based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation. Prosthet Orthot Int. 2017;41:446454. PubMed doi:10.1177/0309364616683818

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Desveaux L, Goldstein RS, Mathur S, et al. Physical activity in adults with diabetes following prosthetic rehabilitation. Can J Diabetes. 2016;40:336341. PubMed doi:10.1016/j.jcjd.2016.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    de Groot IB, Bussmann HJ, Stam HJ, Verhaar JA. Small increase of actual physical activity 6 months after total hip or knee arthroplasty. Clin Orthop Relat Res. 2008;466:22012208. doi:10.1007/s11999-008-0315-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Harding P, Holland AE, Delany C, Hinman RS. Do activity levels increase after total hip and knee arthroplasty? Clin Orthop Relat Res. 2014;472:15021511. PubMed doi:10.1007/s11999-013-3427-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Harding PA, Holland AE, Hinman RS, Delany C. Physical activity perceptions and beliefs following total hip and knee arthroplasty: a qualitative study. Physiother Theory Pract. 2015;31:107113. doi:10.3109/09593985.2014.959581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 317 268 27
Full Text Views 42 37 3
PDF Downloads 19 13 2