TV Viewing in 60,202 Adults From the National Brazilian Health Survey: Prevalence, Correlates, and Associations With Chronic Diseases

in Journal of Physical Activity and Health

Click name to view affiliation

André O. Werneck
Search for other papers by André O. Werneck in
Current site
Google Scholar
PubMed
Close
,
Edilson S. Cyrino
Search for other papers by Edilson S. Cyrino in
Current site
Google Scholar
PubMed
Close
,
Paul J. Collings
Search for other papers by Paul J. Collings in
Current site
Google Scholar
PubMed
Close
,
Enio R.V. Ronque
Search for other papers by Enio R.V. Ronque in
Current site
Google Scholar
PubMed
Close
,
Célia L. Szwarcwald
Search for other papers by Célia L. Szwarcwald in
Current site
Google Scholar
PubMed
Close
,
Luís B. Sardinha
Search for other papers by Luís B. Sardinha in
Current site
Google Scholar
PubMed
Close
, and
Danilo R. Silva
Search for other papers by Danilo R. Silva in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: This study describes the levels and patterns of television (TV) viewing in Brazilian adults and investigates associations of TV viewing with hypertension, type 2 diabetes, and heart disease. Methods: Data from the Brazilian Health Survey, a nationally representative survey that was conducted in 2013 (N = 60,202 men and women aged ≥18 y), were used. Information regarding TV viewing, physician diagnoses of type 2 diabetes, hypertension, and heart disease was collected via interview-administered questionnaire. Data on covariables (including chronological age, educational status, skin color, sodium consumption, sugar consumption, tobacco smoking, alcohol consumption, and leisure-time physical activity) were also self-reported. Logistic regression models and population attributable fractions were used for the etiological analyses. Results: The prevalence (95% confidence interval) of >4 hours per day of TV viewing was 12.7% (12.0–13.4) in men and 17.5% (16.8–18.3) in women. Men and women being younger or older, moderately educated, living alone, smoking tobacco, and drinking alcohol were associated with higher reported TV viewing time. Odds ratios (95% confidence interval) revealed that >4 hours per day of TV viewing was associated with type 2 diabetes [male: 1.64 (1.23–2.17) and female: 1.33 (1.09–1.63)], hypertension [male: 1.36 (1.14–1.63) and female: 1.20 (1.05–1.37)], and heart disease [male: 1.96 (1.43–2.69) and female: 1.30 (1.00–1.68)]. Exceeding 4 hours per day of TV viewing was responsible for 6.8% of type 2 diabetes, 3.7% of hypertension, and 7.5% of heart disease cases. Conclusions: Independent of covariates, >4 hours per day of TV viewing was associated with type 2 diabetes, hypertension, and heart disease. High volumes of TV viewing are prevalent and appear to contribute to chronic disease burden.

Werneck, Cyrino, and Ronque are with the Study and Research Group in Metabolism, Nutrition, and Exercise (GEPEMENE), State University of Londrina (UEL), Londrina, Brazil. Werneck is also with the Physical Education Dept, Londrina State University, Londrina, Brazil. Collings is with the Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom; and the Dept of Health Sciences, University of York, York, United Kingdom. Szwarcwald is with the ICICT, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. Sardinha is with the Exercise and Health Laboratory, Faculty of Human Kinetics, CIPER, University of Lisbon, Lisbon, Portugal. Silva is with the Dept of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil.

Werneck (andreowerneck@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    World Health Organization. The top 10 causes of death. 2012. http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed October 1, 2016.

    • Search Google Scholar
    • Export Citation
  • 2.

    Sedentary Behaviour Research Network. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2013;6(1):5556. PubMed doi:10.1139/h2012-024

    • Search Google Scholar
    • Export Citation
  • 3.

    Chau JY, Grunseit AC, Chey T, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS ONE. 2013;8(11):80000. PubMed doi:10.1371/journal.pone.0080000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Rezende LFM, TH, Mielke GI, Viscondi JYK, Rey-López JP, Garcia LMT. All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am J Prev Med. 2016;51(2):253263. PubMed doi:10.1016/j.amepre.2016.01.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mielke GI, Hallal PC, Rodrigues GBA, Szwarcwald CL, Santos FV, Malta DC. Prática de atividade física e hábito de assistir à televisão entre adultos no Brasil: Pesquisa Nacional de Saúde 2013. Epidemiol Serv Saúde. 2015;24(2):277286. doi:10.5123/S1679-49742015000200010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    De Rezende LF, Rodrigues Lopes M, Rey-López JP, Matsudo VK, Luiz Odo C. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS ONE. 2014;9(8):e105620. PubMed doi:10.1371/journal.pone.0105620

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Matthews CE, George SM, Moore SC, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437445. PubMed doi:10.3945/ajcn.111.019620

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):13021310. doi:10.1016/S0140-6736(16)30370-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Fundação Oswaldo Cruz (FioCruz). Pesquisa Nacional de Saúde 2013: Ciclos de Vida; 2015. ftp://ftp.ibge.gov.br/PNS/2013/pns2013.pdf. Accessed January 25, 2017.

    • Search Google Scholar
    • Export Citation
  • 10.

    Dunstan DW, Barr ELM, Healy GN, et al. Television viewing time and mortality: the Australian diabetes, obesity and lifestyle study (AusDiab). Circulation. 2010;121(3):384391. PubMed doi:10.1161/CIRCULATIONAHA.109.894824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):13811395. PubMed doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    World Health Organization. Global Recommendations on Physical Activity for Health. Vol. 14. Geneva, Switzerland: World Health Organization; 2010.

    • Search Google Scholar
    • Export Citation
  • 13.

    Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J Public Health. 1998;88(1):1519. PubMed doi:10.2105/AJPH.88.1.15

  • 14.

    Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219229. PubMed doi:10.1016/S0140-6736(12)61031-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Van-de- Ploeg HP, Chey T, Korda RJ, Banks E, Bauman A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med. 2012;172(6):494500. PubMed doi:10.1001/archinternmed.2011.2174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wijndaele K, Brage S, Besson H, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk study. Int J Epidemiol. 2011;40(1):150159. PubMed doi:10.1016/S0140-6736(12)61031-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Grøntved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality. JAMA. 2016;305(23):24482455. PubMed doi:10.1001/jama.2011.812

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Wijndaele K, Brage S, Besson H, et al. Television viewing and incident cardiovascular disease: prospective associations and mediation analysis in the EPIC Norfolk Study. PLoS ONE. 2011;6(5):e20058. PubMed doi:10.1371/journal.pone.0020058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hobbs M, Pearson N, Foster PJ, Biddle SJH. Sedentary behaviour and diet across the lifespan: an update systematic review. Br J Sports Med. 2014;49:11791188. PubMed doi:10.1136/bjsports-2014-093754

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Schmid D, Ricci C, Leitzmann MF. Associations of objectively assessed physical activity and sedentary time with all-cause mortality in US adults: the NHANES study. PLoS ONE. 2015;10(3):e0119591. doi:10.1371/journal.pone.0119591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schmid D, Ricci C, Baumeister SE, Leitzmann MF. Replacing sedentary time with physical activity in relation to mortality. Med Sci Sports Exerc. 2016;48(7):13121319. PubMed doi:10.1249/MSS.0000000000000913

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Chastin SFM, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS ONE. 2015;10(10):e0139984. PubMed doi:10.1371/journal.pone.0139984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016;22:6172. PubMed

  • 24.

    Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56:26552667. PubMed doi:10.2337/db07-0882

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hamburg NM, McMackin CJ, Huang AL, et al. Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol. 2007;27(12):26502656. PubMed doi:10.1161/ATVBAHA.107.153288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dempsey PC, Owen N, Yates TE, Kingwell BA, Dunstan DW. Sitting less and moving more: improved glycaemic control for type 2 diabetes prevention and management. Curr Diab Rep. 2016;16(11):114. PubMed doi:10.1007/s11892-016-0797-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bergouignan A, Latouche C, Heywood S, et al. Frequent interruptions of sedentary time modulates contraction- and insulin-stimulated glucose uptake pathways in muscle: ancillary analysis from randomized clinical trials. Sci Rep. 2016;6:32044. PubMed doi:10.1038/srep32044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bey L, Akunuri N, Zhao P, et al. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity. Physiol Genomics. 2003;13:157167. PubMed doi:10.1152/physiolgenomics.00001.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pearson N, Biddle SJH. Sedentary behavior and dietary intake in children, adolescents, and adults: a systematic review. Am J Prev Med. 2011;41(2):178188. PubMed doi:10.1016/j.amepre.2011.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Instituto Brasileiro de Geografia e Estatística (IBGE). Censo 2010; 2010. https://censo2010.ibge.gov.br/resultados.html. Accessed January 25, 2017.

    • Search Google Scholar
    • Export Citation
  • 31.

    Okura Y, Urban LH, Mahoney DW, Jacobsen SJ, Rodeheffer RJ. Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. J Clin Epidemiol. 2004;57(10):10961103. PubMed doi:10.1016/j.jclinepi.2004.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Tenkorang EY, Sedziafa P, Sano Y, Kuuire V, Banchani E. Validity of self-report data in hypertension research: findings from the study on global ageing and adult health. J Clin Hypertens. 2015;17(12):977984. PubMed doi:10.1111/jch.12616

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2190 891 63
Full Text Views 4 1 0
PDF Downloads 8 2 0